Spatial validation reveals poor predictive performance of large-scale ecological mapping models
Mapping ecological variables using machine-learning algorithms based on remote-sensing data has become a widespread practice in ecology. Here, the authors use forest biomass mapping as a study case to show that the most common model validation approach, which ignores data spatial structure, leads to...
Guardado en:
Autores principales: | Pierre Ploton, Frédéric Mortier, Maxime Réjou-Méchain, Nicolas Barbier, Nicolas Picard, Vivien Rossi, Carsten Dormann, Guillaume Cornu, Gaëlle Viennois, Nicolas Bayol, Alexei Lyapustin, Sylvie Gourlet-Fleury, Raphaël Pélissier |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/628f13be6ee34becb88ef385ebe283e3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Using Model Analysis to Unveil Hidden Patterns in Tropical Forest Structures
por: Nicolas Picard, et al.
Publicado: (2021) -
La gouvernance conflictuelle relative à la cogestion des saumons dans le bassin du fleuve Columbia (États-Unis)
por: Nicolas Barbier
Publicado: (2013) -
Roman familia and the new approach to Ancient Roman Economic History
por: B. S. Lyapustin
Publicado: (2009) -
Making infrastructure reform in Latin America work for the poor
por: Estache, Antonio, et al.
Publicado: (2014) -
High association of COVID-19 severity with poor gut health score in Lebanese patients.
por: Imad Al Kassaa, et al.
Publicado: (2021)