Automatic diagnosis of the 12-lead ECG using a deep neural network
The role of automatic electrocardiogram (ECG) analysis in clinical practice is limited by the accuracy of existing models. In that context, the authors present a Deep Neural Network (DNN) that recognizes different abnormalities in ECG recordings which matches or outperform cardiology and emergency r...
Guardado en:
Autores principales: | Antônio H. Ribeiro, Manoel Horta Ribeiro, Gabriela M. M. Paixão, Derick M. Oliveira, Paulo R. Gomes, Jéssica A. Canazart, Milton P. S. Ferreira, Carl R. Andersson, Peter W. Macfarlane, Wagner Meira Jr., Thomas B. Schön, Antonio Luiz P. Ribeiro |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6298880e5e2a47198ce31ab9d3b78bdf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Author Correction: Automatic diagnosis of the 12-lead ECG using a deep neural network
por: Antônio H. Ribeiro, et al.
Publicado: (2020) -
Deep neural network-estimated electrocardiographic age as a mortality predictor
por: Emilly M. Lima, et al.
Publicado: (2021) -
Comparison of electrocardiograms (ECG) waveforms and centralized ECG measurements between a simple 6‐lead mobile ECG device and a standard 12‐lead ECG
por: Robert Kleiman, et al.
Publicado: (2021) -
ECG Signal-Enabled Automatic Diagnosis Technology of Heart Failure
por: Lian Chen, et al.
Publicado: (2021) -
Automatic Multi-Label ECG Classification with Category Imbalance and Cost-Sensitive Thresholding
por: Yang Liu, et al.
Publicado: (2021)