Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi

Selecting a major can be quite difficult for prospective college students. The choice may have an effect not only on their academic life, but also on their career path. Due to some restrictions as the impact of the COVID-19 pandemic, universities must find novel ways to reach prospective students an...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ahmad Rafie Pratama, Rio Rizki Aryanto, Lizda Iswari
Formato: article
Lenguaje:ID
Publicado: Ikatan Ahli Indormatika Indonesia 2021
Materias:
Acceso en línea:https://doaj.org/article/629cdece7cec4a578dc69b408583aaed
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:629cdece7cec4a578dc69b408583aaed
record_format dspace
spelling oai:doaj.org-article:629cdece7cec4a578dc69b408583aaed2021-11-16T13:16:12ZStudi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi2580-076010.29207/resti.v5i5.3392https://doaj.org/article/629cdece7cec4a578dc69b408583aaed2021-10-01T00:00:00Zhttp://jurnal.iaii.or.id/index.php/RESTI/article/view/3392https://doaj.org/toc/2580-0760Selecting a major can be quite difficult for prospective college students. The choice may have an effect not only on their academic life, but also on their career path. Due to some restrictions as the impact of the COVID-19 pandemic, universities must find novel ways to reach prospective students and assist them in choosing their majors, one of which is a college major recommendation system. This system can assist prospective students in determining the most appropriate majors for them based on data from the current students. Unlike other existing systems that employ either a rule-based or fuzzy model, this study employs a machine learning approach using data from undergraduate students at Universitas Islam Indonesia. This paper aims to compare several clustering models (i.e., K-means, Agglomerative, Birch, and DBSCAN) for the purpose of categorizing current students, to which the results will be used for classification purposes using various approaches (i.e., single stage vs. multistage), algorithms (i.e., multinomial logistic regression, random forest, and support vector machine), and scenarios (i.e., with or without GPA-based label). Our findings indicate that the K-means model outperformed all other clustering models and that the single stage with random forest classification model performed the best across all scenarios.Ahmad Rafie PratamaRio Rizki AryantoLizda IswariIkatan Ahli Indormatika Indonesiaarticlecomparative studyrecommendation systemmajor selectionmachine learningclassification modelSystems engineeringTA168Information technologyT58.5-58.64IDJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol 5, Iss 5, Pp 853-862 (2021)
institution DOAJ
collection DOAJ
language ID
topic comparative study
recommendation system
major selection
machine learning
classification model
Systems engineering
TA168
Information technology
T58.5-58.64
spellingShingle comparative study
recommendation system
major selection
machine learning
classification model
Systems engineering
TA168
Information technology
T58.5-58.64
Ahmad Rafie Pratama
Rio Rizki Aryanto
Lizda Iswari
Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi
description Selecting a major can be quite difficult for prospective college students. The choice may have an effect not only on their academic life, but also on their career path. Due to some restrictions as the impact of the COVID-19 pandemic, universities must find novel ways to reach prospective students and assist them in choosing their majors, one of which is a college major recommendation system. This system can assist prospective students in determining the most appropriate majors for them based on data from the current students. Unlike other existing systems that employ either a rule-based or fuzzy model, this study employs a machine learning approach using data from undergraduate students at Universitas Islam Indonesia. This paper aims to compare several clustering models (i.e., K-means, Agglomerative, Birch, and DBSCAN) for the purpose of categorizing current students, to which the results will be used for classification purposes using various approaches (i.e., single stage vs. multistage), algorithms (i.e., multinomial logistic regression, random forest, and support vector machine), and scenarios (i.e., with or without GPA-based label). Our findings indicate that the K-means model outperformed all other clustering models and that the single stage with random forest classification model performed the best across all scenarios.
format article
author Ahmad Rafie Pratama
Rio Rizki Aryanto
Lizda Iswari
author_facet Ahmad Rafie Pratama
Rio Rizki Aryanto
Lizda Iswari
author_sort Ahmad Rafie Pratama
title Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi
title_short Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi
title_full Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi
title_fullStr Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi
title_full_unstemmed Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi
title_sort studi komparasi model klasifikasi berbasis pembelajaran mesin untuk sistem rekomendasi program studi
publisher Ikatan Ahli Indormatika Indonesia
publishDate 2021
url https://doaj.org/article/629cdece7cec4a578dc69b408583aaed
work_keys_str_mv AT ahmadrafiepratama studikomparasimodelklasifikasiberbasispembelajaranmesinuntuksistemrekomendasiprogramstudi
AT riorizkiaryanto studikomparasimodelklasifikasiberbasispembelajaranmesinuntuksistemrekomendasiprogramstudi
AT lizdaiswari studikomparasimodelklasifikasiberbasispembelajaranmesinuntuksistemrekomendasiprogramstudi
_version_ 1718426483611926528