Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi
Selecting a major can be quite difficult for prospective college students. The choice may have an effect not only on their academic life, but also on their career path. Due to some restrictions as the impact of the COVID-19 pandemic, universities must find novel ways to reach prospective students an...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | ID |
Publicado: |
Ikatan Ahli Indormatika Indonesia
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/629cdece7cec4a578dc69b408583aaed |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:629cdece7cec4a578dc69b408583aaed |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:629cdece7cec4a578dc69b408583aaed2021-11-16T13:16:12ZStudi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi2580-076010.29207/resti.v5i5.3392https://doaj.org/article/629cdece7cec4a578dc69b408583aaed2021-10-01T00:00:00Zhttp://jurnal.iaii.or.id/index.php/RESTI/article/view/3392https://doaj.org/toc/2580-0760Selecting a major can be quite difficult for prospective college students. The choice may have an effect not only on their academic life, but also on their career path. Due to some restrictions as the impact of the COVID-19 pandemic, universities must find novel ways to reach prospective students and assist them in choosing their majors, one of which is a college major recommendation system. This system can assist prospective students in determining the most appropriate majors for them based on data from the current students. Unlike other existing systems that employ either a rule-based or fuzzy model, this study employs a machine learning approach using data from undergraduate students at Universitas Islam Indonesia. This paper aims to compare several clustering models (i.e., K-means, Agglomerative, Birch, and DBSCAN) for the purpose of categorizing current students, to which the results will be used for classification purposes using various approaches (i.e., single stage vs. multistage), algorithms (i.e., multinomial logistic regression, random forest, and support vector machine), and scenarios (i.e., with or without GPA-based label). Our findings indicate that the K-means model outperformed all other clustering models and that the single stage with random forest classification model performed the best across all scenarios.Ahmad Rafie PratamaRio Rizki AryantoLizda IswariIkatan Ahli Indormatika Indonesiaarticlecomparative studyrecommendation systemmajor selectionmachine learningclassification modelSystems engineeringTA168Information technologyT58.5-58.64IDJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi), Vol 5, Iss 5, Pp 853-862 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
ID |
topic |
comparative study recommendation system major selection machine learning classification model Systems engineering TA168 Information technology T58.5-58.64 |
spellingShingle |
comparative study recommendation system major selection machine learning classification model Systems engineering TA168 Information technology T58.5-58.64 Ahmad Rafie Pratama Rio Rizki Aryanto Lizda Iswari Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi |
description |
Selecting a major can be quite difficult for prospective college students. The choice may have an effect not only on their academic life, but also on their career path. Due to some restrictions as the impact of the COVID-19 pandemic, universities must find novel ways to reach prospective students and assist them in choosing their majors, one of which is a college major recommendation system. This system can assist prospective students in determining the most appropriate majors for them based on data from the current students. Unlike other existing systems that employ either a rule-based or fuzzy model, this study employs a machine learning approach using data from undergraduate students at Universitas Islam Indonesia. This paper aims to compare several clustering models (i.e., K-means, Agglomerative, Birch, and DBSCAN) for the purpose of categorizing current students, to which the results will be used for classification purposes using various approaches (i.e., single stage vs. multistage), algorithms (i.e., multinomial logistic regression, random forest, and support vector machine), and scenarios (i.e., with or without GPA-based label). Our findings indicate that the K-means model outperformed all other clustering models and that the single stage with random forest classification model performed the best across all scenarios. |
format |
article |
author |
Ahmad Rafie Pratama Rio Rizki Aryanto Lizda Iswari |
author_facet |
Ahmad Rafie Pratama Rio Rizki Aryanto Lizda Iswari |
author_sort |
Ahmad Rafie Pratama |
title |
Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi |
title_short |
Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi |
title_full |
Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi |
title_fullStr |
Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi |
title_full_unstemmed |
Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin untuk Sistem Rekomendasi Program Studi |
title_sort |
studi komparasi model klasifikasi berbasis pembelajaran mesin untuk sistem rekomendasi program studi |
publisher |
Ikatan Ahli Indormatika Indonesia |
publishDate |
2021 |
url |
https://doaj.org/article/629cdece7cec4a578dc69b408583aaed |
work_keys_str_mv |
AT ahmadrafiepratama studikomparasimodelklasifikasiberbasispembelajaranmesinuntuksistemrekomendasiprogramstudi AT riorizkiaryanto studikomparasimodelklasifikasiberbasispembelajaranmesinuntuksistemrekomendasiprogramstudi AT lizdaiswari studikomparasimodelklasifikasiberbasispembelajaranmesinuntuksistemrekomendasiprogramstudi |
_version_ |
1718426483611926528 |