Development and validation of an interpretable neural network for prediction of postoperative in-hospital mortality
Abstract While deep neural networks (DNNs) and other machine learning models often have higher accuracy than simpler models like logistic regression (LR), they are often considered to be “black box” models and this lack of interpretability and transparency is considered a challenge for clinical adop...
Guardado en:
Autores principales: | Christine K. Lee, Muntaha Samad, Ira Hofer, Maxime Cannesson, Pierre Baldi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/62aa884547394eaa8877a5d5995160f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development and validation of a deep neural network model to predict postoperative mortality, acute kidney injury, and reintubation using a single feature set
por: Ira S. Hofer, et al.
Publicado: (2020) -
Application of Deep Neural Network Factor Analysis Model in Operating Room Management Nursing Analysis of Postoperative Infection Nursing after Thoracic Surgery
por: Jing Wen, et al.
Publicado: (2021) -
Interpretable survival prediction for colorectal cancer using deep learning
por: Ellery Wulczyn, et al.
Publicado: (2021) -
Verification, analytical validation, and clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs)
por: Jennifer C. Goldsack, et al.
Publicado: (2020) -
A validated, real-time prediction model for favorable outcomes in hospitalized COVID-19 patients
por: Narges Razavian, et al.
Publicado: (2020)