Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease

Deep learning (DL) can be used to automatically extract complex features from dynamic systems. Here, the authors combine high-content imaging, DL and mechanistic models to extract and explain drug-induced morphological changes in the growth of the fungus responsible for Asian soybean rust.

Guardado en:
Detalles Bibliográficos
Autores principales: Henry Cavanagh, Andreas Mosbach, Gabriel Scalliet, Rob Lind, Robert G. Endres
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/62b07d36ecec49c6a79eaecd11d5e4d1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Deep learning (DL) can be used to automatically extract complex features from dynamic systems. Here, the authors combine high-content imaging, DL and mechanistic models to extract and explain drug-induced morphological changes in the growth of the fungus responsible for Asian soybean rust.