Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease

Deep learning (DL) can be used to automatically extract complex features from dynamic systems. Here, the authors combine high-content imaging, DL and mechanistic models to extract and explain drug-induced morphological changes in the growth of the fungus responsible for Asian soybean rust.

Guardado en:
Detalles Bibliográficos
Autores principales: Henry Cavanagh, Andreas Mosbach, Gabriel Scalliet, Rob Lind, Robert G. Endres
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/62b07d36ecec49c6a79eaecd11d5e4d1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:62b07d36ecec49c6a79eaecd11d5e4d1
record_format dspace
spelling oai:doaj.org-article:62b07d36ecec49c6a79eaecd11d5e4d12021-11-08T11:07:56ZPhysics-informed deep learning characterizes morphodynamics of Asian soybean rust disease10.1038/s41467-021-26577-12041-1723https://doaj.org/article/62b07d36ecec49c6a79eaecd11d5e4d12021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26577-1https://doaj.org/toc/2041-1723Deep learning (DL) can be used to automatically extract complex features from dynamic systems. Here, the authors combine high-content imaging, DL and mechanistic models to extract and explain drug-induced morphological changes in the growth of the fungus responsible for Asian soybean rust.Henry CavanaghAndreas MosbachGabriel ScallietRob LindRobert G. EndresNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-9 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Henry Cavanagh
Andreas Mosbach
Gabriel Scalliet
Rob Lind
Robert G. Endres
Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease
description Deep learning (DL) can be used to automatically extract complex features from dynamic systems. Here, the authors combine high-content imaging, DL and mechanistic models to extract and explain drug-induced morphological changes in the growth of the fungus responsible for Asian soybean rust.
format article
author Henry Cavanagh
Andreas Mosbach
Gabriel Scalliet
Rob Lind
Robert G. Endres
author_facet Henry Cavanagh
Andreas Mosbach
Gabriel Scalliet
Rob Lind
Robert G. Endres
author_sort Henry Cavanagh
title Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease
title_short Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease
title_full Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease
title_fullStr Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease
title_full_unstemmed Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease
title_sort physics-informed deep learning characterizes morphodynamics of asian soybean rust disease
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/62b07d36ecec49c6a79eaecd11d5e4d1
work_keys_str_mv AT henrycavanagh physicsinformeddeeplearningcharacterizesmorphodynamicsofasiansoybeanrustdisease
AT andreasmosbach physicsinformeddeeplearningcharacterizesmorphodynamicsofasiansoybeanrustdisease
AT gabrielscalliet physicsinformeddeeplearningcharacterizesmorphodynamicsofasiansoybeanrustdisease
AT roblind physicsinformeddeeplearningcharacterizesmorphodynamicsofasiansoybeanrustdisease
AT robertgendres physicsinformeddeeplearningcharacterizesmorphodynamicsofasiansoybeanrustdisease
_version_ 1718442336573194240