Physics-informed deep learning characterizes morphodynamics of Asian soybean rust disease
Deep learning (DL) can be used to automatically extract complex features from dynamic systems. Here, the authors combine high-content imaging, DL and mechanistic models to extract and explain drug-induced morphological changes in the growth of the fungus responsible for Asian soybean rust.
Enregistré dans:
Auteurs principaux: | Henry Cavanagh, Andreas Mosbach, Gabriel Scalliet, Rob Lind, Robert G. Endres |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/62b07d36ecec49c6a79eaecd11d5e4d1 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Characterization of soybean genotypes for Asian soybean rust reaction under screen house condition
par: ALFI INAYATI, et autres
Publié: (2016) -
Comparative mapping of crawling-cell morphodynamics in deep learning-based feature space.
par: Daisuke Imoto, et autres
Publié: (2021) -
Morphodynamical enaction: the case of color
par: PETITOT,JEAN
Publié: (2003) -
Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning.
par: Remy Elbez, et autres
Publié: (2021) -
Cell-morphodynamic phenotype classification with application to cancer metastasis using cell magnetorotation and machine-learning
par: Remy Elbez, et autres
Publié: (2021)