An Analytic Method for Improving the Reliability of Models Based on a Histogram for Prediction of Companion Dogs’ Behaviors
Dogs and cats tend to show their conditions and desires through their behaviors. In companion animal behavior recognition, behavior data obtained by attaching a wearable device or sensor to a dog’s body are mostly used. However, differences occur in the output values of the sensor when the dog moves...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/62b75da753794be2b0119ae084edaf3d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:62b75da753794be2b0119ae084edaf3d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:62b75da753794be2b0119ae084edaf3d2021-11-25T16:43:21ZAn Analytic Method for Improving the Reliability of Models Based on a Histogram for Prediction of Companion Dogs’ Behaviors10.3390/app1122110502076-3417https://doaj.org/article/62b75da753794be2b0119ae084edaf3d2021-11-01T00:00:00Zhttps://www.mdpi.com/2076-3417/11/22/11050https://doaj.org/toc/2076-3417Dogs and cats tend to show their conditions and desires through their behaviors. In companion animal behavior recognition, behavior data obtained by attaching a wearable device or sensor to a dog’s body are mostly used. However, differences occur in the output values of the sensor when the dog moves violently. A tightly coupled RGB time tensor network (TRT-Net) is proposed that minimizes the loss of spatiotemporal information by reflecting the three components (x-, y-, and z-axes) of the skeleton sequences in the corresponding three channels (red, green, and blue) for the behavioral classification of dogs. This paper introduces the YouTube-C7B dataset consisting of dog behaviors in various environments. Based on a method that visualizes the Conv-layer filters in analyzable feature maps, we add reliability to the results derived by the model. We can identify the joint parts, i.e., those represented as rows of input images showing behaviors, learned by the proposed model mainly for making decisions. Finally, the performance of the proposed method is compared to those of the LSTM, GRU, and RNN models. The experimental results demonstrate that the proposed TRT-Net method classifies dog behaviors more effectively, with improved accuracy and F1 scores of 7.9% and 7.3% over conventional models.Hye-Jin LeeSun-Young IhmSo-Hyun ParkYoung-Ho ParkMDPI AGarticleartificial intelligencedog behaviorsmulti class classificationtensor fusionTechnologyTEngineering (General). Civil engineering (General)TA1-2040Biology (General)QH301-705.5PhysicsQC1-999ChemistryQD1-999ENApplied Sciences, Vol 11, Iss 11050, p 11050 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
artificial intelligence dog behaviors multi class classification tensor fusion Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 |
spellingShingle |
artificial intelligence dog behaviors multi class classification tensor fusion Technology T Engineering (General). Civil engineering (General) TA1-2040 Biology (General) QH301-705.5 Physics QC1-999 Chemistry QD1-999 Hye-Jin Lee Sun-Young Ihm So-Hyun Park Young-Ho Park An Analytic Method for Improving the Reliability of Models Based on a Histogram for Prediction of Companion Dogs’ Behaviors |
description |
Dogs and cats tend to show their conditions and desires through their behaviors. In companion animal behavior recognition, behavior data obtained by attaching a wearable device or sensor to a dog’s body are mostly used. However, differences occur in the output values of the sensor when the dog moves violently. A tightly coupled RGB time tensor network (TRT-Net) is proposed that minimizes the loss of spatiotemporal information by reflecting the three components (x-, y-, and z-axes) of the skeleton sequences in the corresponding three channels (red, green, and blue) for the behavioral classification of dogs. This paper introduces the YouTube-C7B dataset consisting of dog behaviors in various environments. Based on a method that visualizes the Conv-layer filters in analyzable feature maps, we add reliability to the results derived by the model. We can identify the joint parts, i.e., those represented as rows of input images showing behaviors, learned by the proposed model mainly for making decisions. Finally, the performance of the proposed method is compared to those of the LSTM, GRU, and RNN models. The experimental results demonstrate that the proposed TRT-Net method classifies dog behaviors more effectively, with improved accuracy and F1 scores of 7.9% and 7.3% over conventional models. |
format |
article |
author |
Hye-Jin Lee Sun-Young Ihm So-Hyun Park Young-Ho Park |
author_facet |
Hye-Jin Lee Sun-Young Ihm So-Hyun Park Young-Ho Park |
author_sort |
Hye-Jin Lee |
title |
An Analytic Method for Improving the Reliability of Models Based on a Histogram for Prediction of Companion Dogs’ Behaviors |
title_short |
An Analytic Method for Improving the Reliability of Models Based on a Histogram for Prediction of Companion Dogs’ Behaviors |
title_full |
An Analytic Method for Improving the Reliability of Models Based on a Histogram for Prediction of Companion Dogs’ Behaviors |
title_fullStr |
An Analytic Method for Improving the Reliability of Models Based on a Histogram for Prediction of Companion Dogs’ Behaviors |
title_full_unstemmed |
An Analytic Method for Improving the Reliability of Models Based on a Histogram for Prediction of Companion Dogs’ Behaviors |
title_sort |
analytic method for improving the reliability of models based on a histogram for prediction of companion dogs’ behaviors |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/62b75da753794be2b0119ae084edaf3d |
work_keys_str_mv |
AT hyejinlee ananalyticmethodforimprovingthereliabilityofmodelsbasedonahistogramforpredictionofcompaniondogsbehaviors AT sunyoungihm ananalyticmethodforimprovingthereliabilityofmodelsbasedonahistogramforpredictionofcompaniondogsbehaviors AT sohyunpark ananalyticmethodforimprovingthereliabilityofmodelsbasedonahistogramforpredictionofcompaniondogsbehaviors AT younghopark ananalyticmethodforimprovingthereliabilityofmodelsbasedonahistogramforpredictionofcompaniondogsbehaviors AT hyejinlee analyticmethodforimprovingthereliabilityofmodelsbasedonahistogramforpredictionofcompaniondogsbehaviors AT sunyoungihm analyticmethodforimprovingthereliabilityofmodelsbasedonahistogramforpredictionofcompaniondogsbehaviors AT sohyunpark analyticmethodforimprovingthereliabilityofmodelsbasedonahistogramforpredictionofcompaniondogsbehaviors AT younghopark analyticmethodforimprovingthereliabilityofmodelsbasedonahistogramforpredictionofcompaniondogsbehaviors |
_version_ |
1718413021385064448 |