Shallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field

Using the effective mass approximation in a parabolic two-band model, we studied the effects of the geometrical parameters, on the electron and hole states, in two truncated conical quantum dots: (i) GaAs-(Ga,Al)As in the presence of a shallow donor impurity and under an applied magnetic field and (...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lorenz Pulgar-Velásquez, José Sierra-Ortega, Juan A. Vinasco, David Laroze, Adrian Radu, Esin Kasapoglu, Ricardo L. Restrepo, John A. Gil-Corrales, Alvaro L. Morales, Carlos A. Duque
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/62c2dac152f442cd8aeba32bd1adcab9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:62c2dac152f442cd8aeba32bd1adcab9
record_format dspace
spelling oai:doaj.org-article:62c2dac152f442cd8aeba32bd1adcab92021-11-25T18:30:09ZShallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field10.3390/nano111128322079-4991https://doaj.org/article/62c2dac152f442cd8aeba32bd1adcab92021-10-01T00:00:00Zhttps://www.mdpi.com/2079-4991/11/11/2832https://doaj.org/toc/2079-4991Using the effective mass approximation in a parabolic two-band model, we studied the effects of the geometrical parameters, on the electron and hole states, in two truncated conical quantum dots: (i) GaAs-(Ga,Al)As in the presence of a shallow donor impurity and under an applied magnetic field and (ii) CdSe–CdTe core–shell type-II quantum dot. For the first system, the impurity position and the applied magnetic field direction were chosen to preserve the system’s azimuthal symmetry. The finite element method obtains the solution of the Schrödinger equations for electron or hole with or without impurity with an adaptive discretization of a triangular mesh. The interaction of the electron and hole states is calculated in a first-order perturbative approximation. This study shows that the magnetic field and donor impurities are relevant factors in the optoelectronic properties of conical quantum dots. Additionally, for the CdSe–CdTe quantum dot, where, again, the axial symmetry is preserved, a switch between direct and indirect exciton is possible to be controlled through geometry.Lorenz Pulgar-VelásquezJosé Sierra-OrtegaJuan A. VinascoDavid LarozeAdrian RaduEsin KasapogluRicardo L. RestrepoJohn A. Gil-CorralesAlvaro L. MoralesCarlos A. DuqueMDPI AGarticletruncated conical quantum dotsexciton statesdonor-impurity statesapplied magnetic fieldtype II quantum dotsChemistryQD1-999ENNanomaterials, Vol 11, Iss 2832, p 2832 (2021)
institution DOAJ
collection DOAJ
language EN
topic truncated conical quantum dots
exciton states
donor-impurity states
applied magnetic field
type II quantum dots
Chemistry
QD1-999
spellingShingle truncated conical quantum dots
exciton states
donor-impurity states
applied magnetic field
type II quantum dots
Chemistry
QD1-999
Lorenz Pulgar-Velásquez
José Sierra-Ortega
Juan A. Vinasco
David Laroze
Adrian Radu
Esin Kasapoglu
Ricardo L. Restrepo
John A. Gil-Corrales
Alvaro L. Morales
Carlos A. Duque
Shallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field
description Using the effective mass approximation in a parabolic two-band model, we studied the effects of the geometrical parameters, on the electron and hole states, in two truncated conical quantum dots: (i) GaAs-(Ga,Al)As in the presence of a shallow donor impurity and under an applied magnetic field and (ii) CdSe–CdTe core–shell type-II quantum dot. For the first system, the impurity position and the applied magnetic field direction were chosen to preserve the system’s azimuthal symmetry. The finite element method obtains the solution of the Schrödinger equations for electron or hole with or without impurity with an adaptive discretization of a triangular mesh. The interaction of the electron and hole states is calculated in a first-order perturbative approximation. This study shows that the magnetic field and donor impurities are relevant factors in the optoelectronic properties of conical quantum dots. Additionally, for the CdSe–CdTe quantum dot, where, again, the axial symmetry is preserved, a switch between direct and indirect exciton is possible to be controlled through geometry.
format article
author Lorenz Pulgar-Velásquez
José Sierra-Ortega
Juan A. Vinasco
David Laroze
Adrian Radu
Esin Kasapoglu
Ricardo L. Restrepo
John A. Gil-Corrales
Alvaro L. Morales
Carlos A. Duque
author_facet Lorenz Pulgar-Velásquez
José Sierra-Ortega
Juan A. Vinasco
David Laroze
Adrian Radu
Esin Kasapoglu
Ricardo L. Restrepo
John A. Gil-Corrales
Alvaro L. Morales
Carlos A. Duque
author_sort Lorenz Pulgar-Velásquez
title Shallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field
title_short Shallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field
title_full Shallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field
title_fullStr Shallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field
title_full_unstemmed Shallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field
title_sort shallow donor impurity states with excitonic contribution in gaas/algaas and cdte/cdse truncated conical quantum dots under applied magnetic field
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/62c2dac152f442cd8aeba32bd1adcab9
work_keys_str_mv AT lorenzpulgarvelasquez shallowdonorimpuritystateswithexcitoniccontributioningaasalgaasandcdtecdsetruncatedconicalquantumdotsunderappliedmagneticfield
AT josesierraortega shallowdonorimpuritystateswithexcitoniccontributioningaasalgaasandcdtecdsetruncatedconicalquantumdotsunderappliedmagneticfield
AT juanavinasco shallowdonorimpuritystateswithexcitoniccontributioningaasalgaasandcdtecdsetruncatedconicalquantumdotsunderappliedmagneticfield
AT davidlaroze shallowdonorimpuritystateswithexcitoniccontributioningaasalgaasandcdtecdsetruncatedconicalquantumdotsunderappliedmagneticfield
AT adrianradu shallowdonorimpuritystateswithexcitoniccontributioningaasalgaasandcdtecdsetruncatedconicalquantumdotsunderappliedmagneticfield
AT esinkasapoglu shallowdonorimpuritystateswithexcitoniccontributioningaasalgaasandcdtecdsetruncatedconicalquantumdotsunderappliedmagneticfield
AT ricardolrestrepo shallowdonorimpuritystateswithexcitoniccontributioningaasalgaasandcdtecdsetruncatedconicalquantumdotsunderappliedmagneticfield
AT johnagilcorrales shallowdonorimpuritystateswithexcitoniccontributioningaasalgaasandcdtecdsetruncatedconicalquantumdotsunderappliedmagneticfield
AT alvarolmorales shallowdonorimpuritystateswithexcitoniccontributioningaasalgaasandcdtecdsetruncatedconicalquantumdotsunderappliedmagneticfield
AT carlosaduque shallowdonorimpuritystateswithexcitoniccontributioningaasalgaasandcdtecdsetruncatedconicalquantumdotsunderappliedmagneticfield
_version_ 1718411077910265856