Impact of image compression on deep learning-based mammogram classification
Abstract Image compression is used in several clinical organizations to help address the overhead associated with medical imaging. These methods reduce file size by using a compact representation of the original image. This study aimed to analyze the impact of image compression on the performance of...
Guardado en:
Autores principales: | Yong-Yeon Jo, Young Sang Choi, Hyun Woo Park, Jae Hyeok Lee, Hyojung Jung, Hyo-Eun Kim, Kyounglan Ko, Chan Wha Lee, Hyo Soung Cha, Yul Hwangbo |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/62d819ec026a4b0db3bd394824a170e1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An automated mammogram classification system using modified support vector machine
por: Kayode AA, et al.
Publicado: (2019) -
Multi-View Feature Fusion Based Four Views Model for Mammogram Classification Using Convolutional Neural Network
por: Hasan Nasir Khan, et al.
Publicado: (2019) -
King Abdulaziz University Breast Cancer Mammogram Dataset (KAU-BCMD)
por: Asmaa S. Alsolami, et al.
Publicado: (2021) -
Classification of MR-Detected Additional Lesions in Patients With Breast Cancer Using a Combination of Radiomics Analysis and Machine Learning
por: Hyo-jae Lee, et al.
Publicado: (2021) -
Comparison of Current Deep Convolutional Neural Networks for the Segmentation of Breast Masses in Mammograms
por: Andres Anaya-Isaza, et al.
Publicado: (2021)