Deep learning-enabled point-of-care sensing using multiplexed paper-based sensors
Abstract We present a deep learning-based framework to design and quantify point-of-care sensors. As a use-case, we demonstrated a low-cost and rapid paper-based vertical flow assay (VFA) for high sensitivity C-Reactive Protein (hsCRP) testing, commonly used for assessing risk of cardio-vascular dis...
Guardado en:
Autores principales: | Zachary S. Ballard, Hyou-Arm Joung, Artem Goncharov, Jesse Liang, Karina Nugroho, Dino Di Carlo, Omai B. Garner, Aydogan Ozcan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/62e597e200f243a7b19c1eeece7eed14 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning-enabled medical computer vision
por: Andre Esteva, et al.
Publicado: (2021) -
Automated screening of sickle cells using a smartphone-based microscope and deep learning
por: Kevin de Haan, et al.
Publicado: (2020) -
Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery
por: Catherine Adans-Dester, et al.
Publicado: (2020) -
Predicting mortality risk for preterm infants using deep learning models with time-series vital sign data
por: Jiarui Feng, et al.
Publicado: (2021) -
A machine learning approach predicts future risk to suicidal ideation from social media data
por: Arunima Roy, et al.
Publicado: (2020)