Coordinate Descent-Based Sparse Nonnegative Matrix Factorization for Robust Cancer-Class Discovery and Microarray Data Analysis
Determining the number of clusters in high-dimensional real-life datasets and interpreting the final outcome are among the challenging problems in data science. Discovering the number of classes in cancer and microarray data plays a vital role in the treatment and diagnosis of cancers and other rela...
Guardado en:
Autor principal: | Melisew Tefera Belachew |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/62f6f6e5f3de45cd9b6d725e02fff1e9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
On the Number of Conjugate Classes of Derangements
por: Wen-Wei Li, et al.
Publicado: (2021) -
Two Classes of Infrasoft Separation Axioms
por: Tareq M. Al-shami, et al.
Publicado: (2021) -
Coordinated Development of Regional Complex System: A Niche-Based Study
por: Jianling Li, et al.
Publicado: (2021) -
Robust Structured Convex Nonnegative Matrix Factorization for Data Representation
por: Qing Yang, et al.
Publicado: (2021) -
On the Chebyshev Polynomial for a Certain Class of Analytic Univalent Functions
por: Shahram Najafzadeh, et al.
Publicado: (2021)