Coordinate Descent-Based Sparse Nonnegative Matrix Factorization for Robust Cancer-Class Discovery and Microarray Data Analysis
Determining the number of clusters in high-dimensional real-life datasets and interpreting the final outcome are among the challenging problems in data science. Discovering the number of classes in cancer and microarray data plays a vital role in the treatment and diagnosis of cancers and other rela...
Enregistré dans:
Auteur principal: | Melisew Tefera Belachew |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Hindawi Limited
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/62f6f6e5f3de45cd9b6d725e02fff1e9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
On the Number of Conjugate Classes of Derangements
par: Wen-Wei Li, et autres
Publié: (2021) -
Two Classes of Infrasoft Separation Axioms
par: Tareq M. Al-shami, et autres
Publié: (2021) -
Coordinated Development of Regional Complex System: A Niche-Based Study
par: Jianling Li, et autres
Publié: (2021) -
Robust Structured Convex Nonnegative Matrix Factorization for Data Representation
par: Qing Yang, et autres
Publié: (2021) -
On the Chebyshev Polynomial for a Certain Class of Analytic Univalent Functions
par: Shahram Najafzadeh, et autres
Publié: (2021)