Improving the Performance of Infrared and Visible Image Fusion Based on Latent Low-Rank Representation Nested With Rolling Guided Image Filtering
The fusion quality of infrared and visible image is very important for subsequent human understanding of image information and target processing. The fusion quality of the existing infrared and visible image fusion methods still has room for improvement in terms of image contrast, sharpness and rich...
Guardado en:
Autores principales: | Ce Gao, Congcong Song, Yanchao Zhang, Donghao Qi, Yi Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/62fc5228386c462e8438e072e0ddb046 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Robust Image Stitching and Reconstruction of Rolling Stocks Using a Novel Kalman Filter With a Multiple-Hypothesis Measurement Model
por: Carlo Alberto Avizzano, et al.
Publicado: (2021) -
Graph-Based Logarithmic Low-Rank Tensor Decomposition for the Fusion of Remotely Sensed Images
por: Fei Ma, et al.
Publicado: (2021) -
Optimal Modulation Technique for Underwater Visible Light Communication Using Rolling-Shutter Sensor
por: Ritsuki Hamagami, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
por: Xiaochen Lu, et al.
Publicado: (2021) -
Intraoperative Guidance Using Hyperspectral Imaging: A Review for Surgeons
por: Manuel Barberio, et al.
Publicado: (2021)