Facile Synthesis ZnS/ZnO/Ni(OH)2 Composites Grown on Ni Foam: A Bifunctional Materials for Photocatalysts and Supercapacitors

Abstract A facile one-step hydrothermal reaction was employed to synthesis an integrated bifunctional composite composed by a network structure of ZnS/ZnO/Ni(OH)2 nanosheets with ZnS/ZnO nanospheres in situ growing on Ni foam. The synergistic effect of these three substances make the composite havin...

Full description

Saved in:
Bibliographic Details
Main Authors: Jin Hao, Xiaobing Wang, Fanggang Liu, Shuang Han, Jianshe Lian, Qing Jiang
Format: article
Language:EN
Published: Nature Portfolio 2017
Subjects:
R
Q
Online Access:https://doaj.org/article/62fc9c0fab7c4bc58f85d1ac3856acc7
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract A facile one-step hydrothermal reaction was employed to synthesis an integrated bifunctional composite composed by a network structure of ZnS/ZnO/Ni(OH)2 nanosheets with ZnS/ZnO nanospheres in situ growing on Ni foam. The synergistic effect of these three substances make the composite having both improved electrochemical performances and photocatalytic activity. The ZnS/ZnO/Ni(OH)2-4mmol shows a high specific capacitance of 1173.8 F g−1 at 1 A g−1, as well as good rate capability and relatively stable cyclability. Using as photocatalyst, the methyl orange dye in solution can be completely decomposed under ultraviolet-visible radiation in about 80 min. And the composite is easy to be repeatedly used because bulk Ni foam was used as a carrier. Such a bifunctional composite material provides a new insight for energy storage and utilization as well as the water pollution treatment.