Machine Learning for Predicting the Risk for Childhood Asthma Using Prenatal, Perinatal, Postnatal and Environmental Factors
The prevalence rate for childhood asthma and its associated risk factors vary significantly across countries and regions. In the case of Morocco, the scarcity of available medical data makes scientific research on diseases such as asthma very challenging. In this paper, we build machine learning mod...
Guardado en:
Autores principales: | Zineb Jeddi, Ihsane Gryech, Mounir Ghogho, Maryame EL Hammoumi, Chafiq Mahraoui |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/630a899d9ccd42e89eb328b8a68945e6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Altered Pattern of Macrophage Polarization as a Biomarker for Severity of Childhood Asthma
por: Kuo CH, et al.
Publicado: (2021) -
Childhood Asthma – The Effect of Asthma Specialist Intervention on Asthma Control: A Retrospective Review
por: Rosman Y, et al.
Publicado: (2021) -
Development of childhood asthma prediction models using machine learning approaches
por: Dilini M. Kothalawala, et al.
Publicado: (2021) -
Development and equivalence of new faces for inclusion in the Childhood Asthma Control Test (C-ACT) response scale
por: Kate Sully, et al.
Publicado: (2021) -
The Journal of asthma
Publicado: (1981)