Latent label mining for group activity recognition in basketball videos
Abstract Motion information has been widely exploited for group activity recognition in sports video. However, in order to model and extract the various motion information between the adjacent frames, existing algorithms only use the coarse video‐level labels as supervision cues. This may lead to th...
Guardado en:
Autores principales: | Lifang Wu, Zeyu Li, Ye Xiang, Meng Jian, Jialie Shen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/631c0cbd2e244026b895fee7983080bd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A deep learning method for video‐based action recognition
por: Guanwen Zhang, et al.
Publicado: (2021) -
Crowd activity recognition in live video streaming via 3D‐ResNet and region graph convolution network
por: Junpeng Kang, et al.
Publicado: (2021) -
Multi‐view intrinsic low‐rank representation for robust face recognition and clustering
por: Zhi‐yang Wang, et al.
Publicado: (2021) -
Multi‐label learning based target detecting from multi‐frame data
por: Mengqing Mei, et al.
Publicado: (2021) -
Human behaviour recognition with mid‐level representations for crowd understanding and analysis
por: Bangyong Sun, et al.
Publicado: (2021)