Applications of Machine Learning in Networking: A Survey of Current Issues and Future Challenges
Communication networks are expanding rapidly and becoming increasingly complex. As a consequence, the conventional rule-based algorithms or protocols may no longer perform at their best efficiencies in these networks. Machine learning (ML) has recently been applied to solve complex problems in many...
Guardado en:
Autores principales: | M. A. Ridwan, N. A. M. Radzi, F. Abdullah, Y. E. Jalil |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/63544c09bdc64bcf9e95ad6150a1a539 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Machine Learning Enhanced Entropy-Based Network Anomaly Detection
por: TIMCENKO, V., et al.
Publicado: (2021) -
Comparative Performance Evaluation of Intrusion Detection Based on Machine Learning in In-Vehicle Controller Area Network Bus
por: Tarek Moulahi, et al.
Publicado: (2021) -
Intercept the Cloud Network From Brute Force and DDoS Attacks via Intrusion Detection and Prevention System
por: Muhammad Nadeem, et al.
Publicado: (2021) -
An Anomaly-Based Intrusion Detection System for Internet of Medical Things Networks
por: Georgios Zachos, et al.
Publicado: (2021) -
Recent Advances in Android Mobile Malware Detection: A Systematic Literature Review
por: Abdulaziz Alzubaidi
Publicado: (2021)