Protein conformational transitions explored by a morphing approach based on normal mode analysis in internal coordinates.
Large-scale conformational changes are essential for proteins to function properly. Given that these transition events rarely occur, however, it is challenging to comprehend their underlying mechanisms through experimental and theoretical approaches. In this study, we propose a new computational met...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/636c5faef7994d18bc8c8691cf025feb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:636c5faef7994d18bc8c8691cf025feb |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:636c5faef7994d18bc8c8691cf025feb2021-12-02T20:04:23ZProtein conformational transitions explored by a morphing approach based on normal mode analysis in internal coordinates.1932-620310.1371/journal.pone.0258818https://doaj.org/article/636c5faef7994d18bc8c8691cf025feb2021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0258818https://doaj.org/toc/1932-6203Large-scale conformational changes are essential for proteins to function properly. Given that these transition events rarely occur, however, it is challenging to comprehend their underlying mechanisms through experimental and theoretical approaches. In this study, we propose a new computational methodology called internal coordinate normal mode-guided elastic network interpolation (ICONGENI) to predict conformational transition pathways in proteins. Its basic approach is to sample intermediate conformations by interpolating the interatomic distance between two end-point conformations with the degrees of freedom constrained by the low-frequency dynamics afforded by normal mode analysis in internal coordinates. For validation of ICONGENI, it is applied to proteins that undergo open-closed transitions, and the simulation results (i.e., simulated transition pathways) are compared with those of another technique, to demonstrate that ICONGENI can explore highly reliable pathways in terms of thermal and chemical stability. Furthermore, we generate an ensemble of transition pathways through ICONGENI and investigate the possibility of using this method to reveal the transition mechanisms even when there are unknown metastable states on rough energy landscapes.Byung Ho LeeSoon Woo ParkSoojin JoMoon Ki KimPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 11, p e0258818 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Byung Ho Lee Soon Woo Park Soojin Jo Moon Ki Kim Protein conformational transitions explored by a morphing approach based on normal mode analysis in internal coordinates. |
description |
Large-scale conformational changes are essential for proteins to function properly. Given that these transition events rarely occur, however, it is challenging to comprehend their underlying mechanisms through experimental and theoretical approaches. In this study, we propose a new computational methodology called internal coordinate normal mode-guided elastic network interpolation (ICONGENI) to predict conformational transition pathways in proteins. Its basic approach is to sample intermediate conformations by interpolating the interatomic distance between two end-point conformations with the degrees of freedom constrained by the low-frequency dynamics afforded by normal mode analysis in internal coordinates. For validation of ICONGENI, it is applied to proteins that undergo open-closed transitions, and the simulation results (i.e., simulated transition pathways) are compared with those of another technique, to demonstrate that ICONGENI can explore highly reliable pathways in terms of thermal and chemical stability. Furthermore, we generate an ensemble of transition pathways through ICONGENI and investigate the possibility of using this method to reveal the transition mechanisms even when there are unknown metastable states on rough energy landscapes. |
format |
article |
author |
Byung Ho Lee Soon Woo Park Soojin Jo Moon Ki Kim |
author_facet |
Byung Ho Lee Soon Woo Park Soojin Jo Moon Ki Kim |
author_sort |
Byung Ho Lee |
title |
Protein conformational transitions explored by a morphing approach based on normal mode analysis in internal coordinates. |
title_short |
Protein conformational transitions explored by a morphing approach based on normal mode analysis in internal coordinates. |
title_full |
Protein conformational transitions explored by a morphing approach based on normal mode analysis in internal coordinates. |
title_fullStr |
Protein conformational transitions explored by a morphing approach based on normal mode analysis in internal coordinates. |
title_full_unstemmed |
Protein conformational transitions explored by a morphing approach based on normal mode analysis in internal coordinates. |
title_sort |
protein conformational transitions explored by a morphing approach based on normal mode analysis in internal coordinates. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/636c5faef7994d18bc8c8691cf025feb |
work_keys_str_mv |
AT byungholee proteinconformationaltransitionsexploredbyamorphingapproachbasedonnormalmodeanalysisininternalcoordinates AT soonwoopark proteinconformationaltransitionsexploredbyamorphingapproachbasedonnormalmodeanalysisininternalcoordinates AT soojinjo proteinconformationaltransitionsexploredbyamorphingapproachbasedonnormalmodeanalysisininternalcoordinates AT moonkikim proteinconformationaltransitionsexploredbyamorphingapproachbasedonnormalmodeanalysisininternalcoordinates |
_version_ |
1718375605804728320 |