Well-posedness analysis of a stationary Navier–Stokes hemivariational inequality
Abstract This paper provides a well-posedness analysis for a hemivariational inequality of the stationary Navier-Stokes equations by arguments of convex minimization and the Banach fixed point. The hemivariational inequality describes a stationary incompressible fluid flow subject to a nonslip bound...
Guardado en:
Autores principales: | Min Ling, Weimin Han |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/63884540977f48beab59c1a0361eda8e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Enhanced algorithms for solving the spectral discretization of the vorticity–velocity–pressure formulation of the Navier–Stokes problem
por: Mohamed Abdelwahed, et al.
Publicado: (2021) -
Analysis of Stokes system with solution-dependent subdifferential boundary conditions
por: Jing Zhao, et al.
Publicado: (2021) -
Retraction Note: Fixed point theorems for solutions of the stationary Schrödinger equation on cones
por: Gaixian Xue, et al.
Publicado: (2020) -
Eventually Periodic Points of Infra-Nil Endomorphisms
por: Ha KuYong, et al.
Publicado: (2010) -
Hybrid Algorithm for Finding Common Elements of the Set of Generalized Equilibrium Problems and the Set of Fixed Point Problems of Strictly Pseudocontractive Mapping
por: Kangtunyakarn Atid
Publicado: (2011)