Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities.
It has been debated how different farming systems influence the composition of soil bacterial communities, which are crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of bacterial 16S rRNA genes to gain further insight into how organ...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6389433b5def492fb12368a70d83a824 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6389433b5def492fb12368a70d83a824 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6389433b5def492fb12368a70d83a8242021-11-18T08:04:31ZPyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities.1932-620310.1371/journal.pone.0051897https://doaj.org/article/6389433b5def492fb12368a70d83a8242012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23284808/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203It has been debated how different farming systems influence the composition of soil bacterial communities, which are crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of bacterial 16S rRNA genes to gain further insight into how organic and conventional farming systems and crop rotation influence bulk soil bacterial communities. A 2×2 factorial experiment consisted of two agriculture management systems (organic versus conventional) and two crop rotations (flax-oat-fababean-wheat versus flax-alfalfa-alfalfa-wheat) was conducted at the Glenlea Long-Term Crop Rotation and Management Station, which is Canada's oldest organic-conventional management study field. Results revealed that there is a significant difference in the composition of bacterial genera between organic and conventional management systems but crop rotation was not a discriminator factor. Organic farming was associated with higher relative abundance of Proteobacteria, while Actinobacteria and Chloroflexi were more abundant in conventional farming. The dominant genera including Blastococcus, Microlunatus, Pseudonocardia, Solirubrobacter, Brevundimonas, Pseudomonas, and Stenotrophomonas exhibited significant variation between the organic and conventional farming systems. The relative abundance of bacterial communities at the phylum and class level was correlated to soil pH rather than other edaphic properties. In addition, it was found that Proteobacteria and Actinobacteria were more sensitive to pH variation.Ru LiEhsan KhafipourDenis O KrauseMartin H EntzTeresa R de KievitW G Dilantha FernandoPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 12, p e51897 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ru Li Ehsan Khafipour Denis O Krause Martin H Entz Teresa R de Kievit W G Dilantha Fernando Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. |
description |
It has been debated how different farming systems influence the composition of soil bacterial communities, which are crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of bacterial 16S rRNA genes to gain further insight into how organic and conventional farming systems and crop rotation influence bulk soil bacterial communities. A 2×2 factorial experiment consisted of two agriculture management systems (organic versus conventional) and two crop rotations (flax-oat-fababean-wheat versus flax-alfalfa-alfalfa-wheat) was conducted at the Glenlea Long-Term Crop Rotation and Management Station, which is Canada's oldest organic-conventional management study field. Results revealed that there is a significant difference in the composition of bacterial genera between organic and conventional management systems but crop rotation was not a discriminator factor. Organic farming was associated with higher relative abundance of Proteobacteria, while Actinobacteria and Chloroflexi were more abundant in conventional farming. The dominant genera including Blastococcus, Microlunatus, Pseudonocardia, Solirubrobacter, Brevundimonas, Pseudomonas, and Stenotrophomonas exhibited significant variation between the organic and conventional farming systems. The relative abundance of bacterial communities at the phylum and class level was correlated to soil pH rather than other edaphic properties. In addition, it was found that Proteobacteria and Actinobacteria were more sensitive to pH variation. |
format |
article |
author |
Ru Li Ehsan Khafipour Denis O Krause Martin H Entz Teresa R de Kievit W G Dilantha Fernando |
author_facet |
Ru Li Ehsan Khafipour Denis O Krause Martin H Entz Teresa R de Kievit W G Dilantha Fernando |
author_sort |
Ru Li |
title |
Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. |
title_short |
Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. |
title_full |
Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. |
title_fullStr |
Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. |
title_full_unstemmed |
Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. |
title_sort |
pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/6389433b5def492fb12368a70d83a824 |
work_keys_str_mv |
AT ruli pyrosequencingrevealstheinfluenceoforganicandconventionalfarmingsystemsonbacterialcommunities AT ehsankhafipour pyrosequencingrevealstheinfluenceoforganicandconventionalfarmingsystemsonbacterialcommunities AT denisokrause pyrosequencingrevealstheinfluenceoforganicandconventionalfarmingsystemsonbacterialcommunities AT martinhentz pyrosequencingrevealstheinfluenceoforganicandconventionalfarmingsystemsonbacterialcommunities AT teresardekievit pyrosequencingrevealstheinfluenceoforganicandconventionalfarmingsystemsonbacterialcommunities AT wgdilanthafernando pyrosequencingrevealstheinfluenceoforganicandconventionalfarmingsystemsonbacterialcommunities |
_version_ |
1718422231781998592 |