A weighted region-based level set method for image segmentation with intensity inhomogeneity.
Image segmentation is a fundamental task in image processing and is still a challenging problem when processing images with high noise, low resolution and intensity inhomogeneity. In this paper, a weighted region-based level set method, which is based on the techniques of local statistical theory, l...
Guardado en:
Autores principales: | Haiping Yu, Ping Sun, Fazhi He, Zhihua Hu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/63986a7912d6480195e952e9eda650de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A hybrid level set model for image segmentation.
por: Weiqin Chen, et al.
Publicado: (2021) -
A novel combined level set model for automatic MR image segmentation
por: Li Jianzhang, et al.
Publicado: (2020) -
Deep and clear optical imaging of thick inhomogeneous samples.
por: Raphael Jorand, et al.
Publicado: (2012) -
Unsupervised Segmentation of Greenhouse Plant Images Based on Statistical Method
por: Ping Zhang, et al.
Publicado: (2018) -
An objective method to optimize the MR sequence set for plaque classification in carotid vessel wall images using automated image segmentation.
por: Ronald van 't Klooster, et al.
Publicado: (2013)