Orthogonal Stability of an Additive-Quadratic Functional Equation

<p>Abstract</p> <p>Using the fixed point method and using the direct method, we prove the Hyers-Ulam stability of an orthogonally additive-quadratic functional equation in orthogonality spaces.</p> <p> <b>(2010) Mathematics Subject Classification: </b>Primar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Park Choonkil
Formato: article
Lenguaje:EN
Publicado: SpringerOpen 2011
Materias:
Acceso en línea:https://doaj.org/article/63ac4929f1a74c5183aa9cfae9a79813
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:63ac4929f1a74c5183aa9cfae9a79813
record_format dspace
spelling oai:doaj.org-article:63ac4929f1a74c5183aa9cfae9a798132021-12-02T11:16:48ZOrthogonal Stability of an Additive-Quadratic Functional Equation1687-18201687-1812https://doaj.org/article/63ac4929f1a74c5183aa9cfae9a798132011-01-01T00:00:00Zhttp://www.fixedpointtheoryandapplications.com/content/2011/1/66https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812<p>Abstract</p> <p>Using the fixed point method and using the direct method, we prove the Hyers-Ulam stability of an orthogonally additive-quadratic functional equation in orthogonality spaces.</p> <p> <b>(2010) Mathematics Subject Classification: </b>Primary 39B55; 47H10; 39B52; 46H25.</p> Park ChoonkilSpringerOpenarticleHyers-Ulam stabilityfixed pointorthogonally additive-quadratic functional equationorthogonality spaceApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2011, Iss 1, p 66 (2011)
institution DOAJ
collection DOAJ
language EN
topic Hyers-Ulam stability
fixed point
orthogonally additive-quadratic functional equation
orthogonality space
Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
spellingShingle Hyers-Ulam stability
fixed point
orthogonally additive-quadratic functional equation
orthogonality space
Applied mathematics. Quantitative methods
T57-57.97
Analysis
QA299.6-433
Park Choonkil
Orthogonal Stability of an Additive-Quadratic Functional Equation
description <p>Abstract</p> <p>Using the fixed point method and using the direct method, we prove the Hyers-Ulam stability of an orthogonally additive-quadratic functional equation in orthogonality spaces.</p> <p> <b>(2010) Mathematics Subject Classification: </b>Primary 39B55; 47H10; 39B52; 46H25.</p>
format article
author Park Choonkil
author_facet Park Choonkil
author_sort Park Choonkil
title Orthogonal Stability of an Additive-Quadratic Functional Equation
title_short Orthogonal Stability of an Additive-Quadratic Functional Equation
title_full Orthogonal Stability of an Additive-Quadratic Functional Equation
title_fullStr Orthogonal Stability of an Additive-Quadratic Functional Equation
title_full_unstemmed Orthogonal Stability of an Additive-Quadratic Functional Equation
title_sort orthogonal stability of an additive-quadratic functional equation
publisher SpringerOpen
publishDate 2011
url https://doaj.org/article/63ac4929f1a74c5183aa9cfae9a79813
work_keys_str_mv AT parkchoonkil orthogonalstabilityofanadditivequadraticfunctionalequation
_version_ 1718396048887513088