Orthogonal Stability of an Additive-Quadratic Functional Equation
<p>Abstract</p> <p>Using the fixed point method and using the direct method, we prove the Hyers-Ulam stability of an orthogonally additive-quadratic functional equation in orthogonality spaces.</p> <p> <b>(2010) Mathematics Subject Classification: </b>Primar...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/63ac4929f1a74c5183aa9cfae9a79813 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:63ac4929f1a74c5183aa9cfae9a79813 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:63ac4929f1a74c5183aa9cfae9a798132021-12-02T11:16:48ZOrthogonal Stability of an Additive-Quadratic Functional Equation1687-18201687-1812https://doaj.org/article/63ac4929f1a74c5183aa9cfae9a798132011-01-01T00:00:00Zhttp://www.fixedpointtheoryandapplications.com/content/2011/1/66https://doaj.org/toc/1687-1820https://doaj.org/toc/1687-1812<p>Abstract</p> <p>Using the fixed point method and using the direct method, we prove the Hyers-Ulam stability of an orthogonally additive-quadratic functional equation in orthogonality spaces.</p> <p> <b>(2010) Mathematics Subject Classification: </b>Primary 39B55; 47H10; 39B52; 46H25.</p> Park ChoonkilSpringerOpenarticleHyers-Ulam stabilityfixed pointorthogonally additive-quadratic functional equationorthogonality spaceApplied mathematics. Quantitative methodsT57-57.97AnalysisQA299.6-433ENFixed Point Theory and Applications, Vol 2011, Iss 1, p 66 (2011) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Hyers-Ulam stability fixed point orthogonally additive-quadratic functional equation orthogonality space Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 |
spellingShingle |
Hyers-Ulam stability fixed point orthogonally additive-quadratic functional equation orthogonality space Applied mathematics. Quantitative methods T57-57.97 Analysis QA299.6-433 Park Choonkil Orthogonal Stability of an Additive-Quadratic Functional Equation |
description |
<p>Abstract</p> <p>Using the fixed point method and using the direct method, we prove the Hyers-Ulam stability of an orthogonally additive-quadratic functional equation in orthogonality spaces.</p> <p> <b>(2010) Mathematics Subject Classification: </b>Primary 39B55; 47H10; 39B52; 46H25.</p> |
format |
article |
author |
Park Choonkil |
author_facet |
Park Choonkil |
author_sort |
Park Choonkil |
title |
Orthogonal Stability of an Additive-Quadratic Functional Equation |
title_short |
Orthogonal Stability of an Additive-Quadratic Functional Equation |
title_full |
Orthogonal Stability of an Additive-Quadratic Functional Equation |
title_fullStr |
Orthogonal Stability of an Additive-Quadratic Functional Equation |
title_full_unstemmed |
Orthogonal Stability of an Additive-Quadratic Functional Equation |
title_sort |
orthogonal stability of an additive-quadratic functional equation |
publisher |
SpringerOpen |
publishDate |
2011 |
url |
https://doaj.org/article/63ac4929f1a74c5183aa9cfae9a79813 |
work_keys_str_mv |
AT parkchoonkil orthogonalstabilityofanadditivequadraticfunctionalequation |
_version_ |
1718396048887513088 |