Orthogonal Stability of an Additive-Quadratic Functional Equation
<p>Abstract</p> <p>Using the fixed point method and using the direct method, we prove the Hyers-Ulam stability of an orthogonally additive-quadratic functional equation in orthogonality spaces.</p> <p> <b>(2010) Mathematics Subject Classification: </b>Primar...
Guardado en:
Autor principal: | Park Choonkil |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SpringerOpen
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/63ac4929f1a74c5183aa9cfae9a79813 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Generalized Hyers-Ulam Stability of Quadratic Functional Equations: A Fixed Point Approach
por: Choonkil Park
Publicado: (2008) -
Retraction Note: Fixed point theorems for solutions of the stationary Schrödinger equation on cones
por: Gaixian Xue, et al.
Publicado: (2020) -
Retraction Note: Sharp geometrical properties of a-rarefied sets via fixed point index for the Schrödinger operator equations
por: Zhiqiang Li, et al.
Publicado: (2020) -
Eventually Periodic Points of Infra-Nil Endomorphisms
por: Ha KuYong, et al.
Publicado: (2010) -
Hybrid Algorithm for Finding Common Elements of the Set of Generalized Equilibrium Problems and the Set of Fixed Point Problems of Strictly Pseudocontractive Mapping
por: Kangtunyakarn Atid
Publicado: (2011)