Probabilistic numerical simulation for predicting spherulitic morphology from calorimetric crystallization conversion curves: An isothermal case

The present work introduces a novel method to estimate the morphology of semicrystalline polymers, namely the average spherulite size, size distribution, and nucleus density based on experimental crystallization conversion curves recorded by differential scanning calorimetry (DSC). A fast and accura...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: János Molnár, Örs Sepsi, Bálint Gaál, Zita Zuba, Monika Dobrzyńska-Mizera, Alfréd Menyárd
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/63aef821282644908a9ef492d9205829
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:63aef821282644908a9ef492d9205829
record_format dspace
spelling oai:doaj.org-article:63aef821282644908a9ef492d92058292021-11-18T04:43:28ZProbabilistic numerical simulation for predicting spherulitic morphology from calorimetric crystallization conversion curves: An isothermal case0264-127510.1016/j.matdes.2021.110245https://doaj.org/article/63aef821282644908a9ef492d92058292021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S0264127521008005https://doaj.org/toc/0264-1275The present work introduces a novel method to estimate the morphology of semicrystalline polymers, namely the average spherulite size, size distribution, and nucleus density based on experimental crystallization conversion curves recorded by differential scanning calorimetry (DSC). A fast and accurate probabilistic numerical simulation method describing random nuclei formation and subsequent growth is introduced to handle the crystallization process of polymers. The developed method was used in a curve-fitting procedure with experimental crystallization curves to obtain structural parameters of neat and nucleated isotactic polypropylene. The simulated morphology was used with success to predict haze of injection-molded samples, proving the reliability and applicability of our new approach. The method presented here can be a useful technique to construct the spherulitic morphology based on crystallization conversion curves and predict properties dependent on the spherulite size, size distribution, and nucleus density, even when microscopic measurement cannot be carried out.János MolnárÖrs SepsiBálint GaálZita ZubaMonika Dobrzyńska-MizeraAlfréd MenyárdElsevierarticleMorphologyCrystallizationSpherulitic structureSimulationOptical propertiesHazeMaterials of engineering and construction. Mechanics of materialsTA401-492ENMaterials & Design, Vol 212, Iss , Pp 110245- (2021)
institution DOAJ
collection DOAJ
language EN
topic Morphology
Crystallization
Spherulitic structure
Simulation
Optical properties
Haze
Materials of engineering and construction. Mechanics of materials
TA401-492
spellingShingle Morphology
Crystallization
Spherulitic structure
Simulation
Optical properties
Haze
Materials of engineering and construction. Mechanics of materials
TA401-492
János Molnár
Örs Sepsi
Bálint Gaál
Zita Zuba
Monika Dobrzyńska-Mizera
Alfréd Menyárd
Probabilistic numerical simulation for predicting spherulitic morphology from calorimetric crystallization conversion curves: An isothermal case
description The present work introduces a novel method to estimate the morphology of semicrystalline polymers, namely the average spherulite size, size distribution, and nucleus density based on experimental crystallization conversion curves recorded by differential scanning calorimetry (DSC). A fast and accurate probabilistic numerical simulation method describing random nuclei formation and subsequent growth is introduced to handle the crystallization process of polymers. The developed method was used in a curve-fitting procedure with experimental crystallization curves to obtain structural parameters of neat and nucleated isotactic polypropylene. The simulated morphology was used with success to predict haze of injection-molded samples, proving the reliability and applicability of our new approach. The method presented here can be a useful technique to construct the spherulitic morphology based on crystallization conversion curves and predict properties dependent on the spherulite size, size distribution, and nucleus density, even when microscopic measurement cannot be carried out.
format article
author János Molnár
Örs Sepsi
Bálint Gaál
Zita Zuba
Monika Dobrzyńska-Mizera
Alfréd Menyárd
author_facet János Molnár
Örs Sepsi
Bálint Gaál
Zita Zuba
Monika Dobrzyńska-Mizera
Alfréd Menyárd
author_sort János Molnár
title Probabilistic numerical simulation for predicting spherulitic morphology from calorimetric crystallization conversion curves: An isothermal case
title_short Probabilistic numerical simulation for predicting spherulitic morphology from calorimetric crystallization conversion curves: An isothermal case
title_full Probabilistic numerical simulation for predicting spherulitic morphology from calorimetric crystallization conversion curves: An isothermal case
title_fullStr Probabilistic numerical simulation for predicting spherulitic morphology from calorimetric crystallization conversion curves: An isothermal case
title_full_unstemmed Probabilistic numerical simulation for predicting spherulitic morphology from calorimetric crystallization conversion curves: An isothermal case
title_sort probabilistic numerical simulation for predicting spherulitic morphology from calorimetric crystallization conversion curves: an isothermal case
publisher Elsevier
publishDate 2021
url https://doaj.org/article/63aef821282644908a9ef492d9205829
work_keys_str_mv AT janosmolnar probabilisticnumericalsimulationforpredictingspheruliticmorphologyfromcalorimetriccrystallizationconversioncurvesanisothermalcase
AT orssepsi probabilisticnumericalsimulationforpredictingspheruliticmorphologyfromcalorimetriccrystallizationconversioncurvesanisothermalcase
AT balintgaal probabilisticnumericalsimulationforpredictingspheruliticmorphologyfromcalorimetriccrystallizationconversioncurvesanisothermalcase
AT zitazuba probabilisticnumericalsimulationforpredictingspheruliticmorphologyfromcalorimetriccrystallizationconversioncurvesanisothermalcase
AT monikadobrzynskamizera probabilisticnumericalsimulationforpredictingspheruliticmorphologyfromcalorimetriccrystallizationconversioncurvesanisothermalcase
AT alfredmenyard probabilisticnumericalsimulationforpredictingspheruliticmorphologyfromcalorimetriccrystallizationconversioncurvesanisothermalcase
_version_ 1718425103805448192