No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions
Abstract New molecular modeling data show that the entropy of bcc iron exhibits no system-size anomalies, implying that it should be feasible to compute accurate free energies of this system using first-principles methods without requiring a prohibitively large number of atoms. Conclusions are based...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/63c85afe43ed467395a6e8747784af57 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:63c85afe43ed467395a6e8747784af57 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:63c85afe43ed467395a6e8747784af572021-12-02T15:08:05ZNo system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions10.1038/s41598-018-25419-32045-2322https://doaj.org/article/63c85afe43ed467395a6e8747784af572018-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-25419-3https://doaj.org/toc/2045-2322Abstract New molecular modeling data show that the entropy of bcc iron exhibits no system-size anomalies, implying that it should be feasible to compute accurate free energies of this system using first-principles methods without requiring a prohibitively large number of atoms. Conclusions are based on rigorous calculations of size-dependent free energies for a Sutton-Chen model of iron previously fit to ab initio calculations, and refute statements recently appearing in the literature indicating that the size of the simulation cell is critical for stabilization of the bcc phase.Andrew J. SchultzSabry G. MoustafaDavid A. KofkeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-9 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Andrew J. Schultz Sabry G. Moustafa David A. Kofke No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions |
description |
Abstract New molecular modeling data show that the entropy of bcc iron exhibits no system-size anomalies, implying that it should be feasible to compute accurate free energies of this system using first-principles methods without requiring a prohibitively large number of atoms. Conclusions are based on rigorous calculations of size-dependent free energies for a Sutton-Chen model of iron previously fit to ab initio calculations, and refute statements recently appearing in the literature indicating that the size of the simulation cell is critical for stabilization of the bcc phase. |
format |
article |
author |
Andrew J. Schultz Sabry G. Moustafa David A. Kofke |
author_facet |
Andrew J. Schultz Sabry G. Moustafa David A. Kofke |
author_sort |
Andrew J. Schultz |
title |
No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions |
title_short |
No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions |
title_full |
No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions |
title_fullStr |
No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions |
title_full_unstemmed |
No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions |
title_sort |
no system-size anomalies in entropy of bcc iron at earth’s inner-core conditions |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/63c85afe43ed467395a6e8747784af57 |
work_keys_str_mv |
AT andrewjschultz nosystemsizeanomaliesinentropyofbccironatearthsinnercoreconditions AT sabrygmoustafa nosystemsizeanomaliesinentropyofbccironatearthsinnercoreconditions AT davidakofke nosystemsizeanomaliesinentropyofbccironatearthsinnercoreconditions |
_version_ |
1718388254695227392 |