No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions

Abstract New molecular modeling data show that the entropy of bcc iron exhibits no system-size anomalies, implying that it should be feasible to compute accurate free energies of this system using first-principles methods without requiring a prohibitively large number of atoms. Conclusions are based...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andrew J. Schultz, Sabry G. Moustafa, David A. Kofke
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/63c85afe43ed467395a6e8747784af57
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:63c85afe43ed467395a6e8747784af57
record_format dspace
spelling oai:doaj.org-article:63c85afe43ed467395a6e8747784af572021-12-02T15:08:05ZNo system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions10.1038/s41598-018-25419-32045-2322https://doaj.org/article/63c85afe43ed467395a6e8747784af572018-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-018-25419-3https://doaj.org/toc/2045-2322Abstract New molecular modeling data show that the entropy of bcc iron exhibits no system-size anomalies, implying that it should be feasible to compute accurate free energies of this system using first-principles methods without requiring a prohibitively large number of atoms. Conclusions are based on rigorous calculations of size-dependent free energies for a Sutton-Chen model of iron previously fit to ab initio calculations, and refute statements recently appearing in the literature indicating that the size of the simulation cell is critical for stabilization of the bcc phase.Andrew J. SchultzSabry G. MoustafaDavid A. KofkeNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 8, Iss 1, Pp 1-9 (2018)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Andrew J. Schultz
Sabry G. Moustafa
David A. Kofke
No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions
description Abstract New molecular modeling data show that the entropy of bcc iron exhibits no system-size anomalies, implying that it should be feasible to compute accurate free energies of this system using first-principles methods without requiring a prohibitively large number of atoms. Conclusions are based on rigorous calculations of size-dependent free energies for a Sutton-Chen model of iron previously fit to ab initio calculations, and refute statements recently appearing in the literature indicating that the size of the simulation cell is critical for stabilization of the bcc phase.
format article
author Andrew J. Schultz
Sabry G. Moustafa
David A. Kofke
author_facet Andrew J. Schultz
Sabry G. Moustafa
David A. Kofke
author_sort Andrew J. Schultz
title No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions
title_short No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions
title_full No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions
title_fullStr No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions
title_full_unstemmed No system-size anomalies in entropy of bcc iron at Earth’s inner-core conditions
title_sort no system-size anomalies in entropy of bcc iron at earth’s inner-core conditions
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/63c85afe43ed467395a6e8747784af57
work_keys_str_mv AT andrewjschultz nosystemsizeanomaliesinentropyofbccironatearthsinnercoreconditions
AT sabrygmoustafa nosystemsizeanomaliesinentropyofbccironatearthsinnercoreconditions
AT davidakofke nosystemsizeanomaliesinentropyofbccironatearthsinnercoreconditions
_version_ 1718388254695227392