The ammonia oxidizing bacterium Nitrosomonas eutropha blocks T helper 2 cell polarization via the anti-inflammatory cytokine IL-10

Abstract The prevalence of atopic diseases has been steadily increasing since the mid twentieth century, a rise that has been linked to modern hygienic lifestyles that limit exposure to microbes and immune system maturation. Overactive type 2 CD4+ helper T (Th2) cells are known to be closely associa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Damien Maura, Nazik Elmekki, C. Alex Goddard
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/63c914141265445cb1aea38a75002766
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract The prevalence of atopic diseases has been steadily increasing since the mid twentieth century, a rise that has been linked to modern hygienic lifestyles that limit exposure to microbes and immune system maturation. Overactive type 2 CD4+ helper T (Th2) cells are known to be closely associated with atopy and represent a key target for treatment. In this study, we present an initial characterization of ammonia oxidizing bacteria (AOB) Nitrosomonas eutropha D23, an environmental microbe that is not associated with human pathology, and show AOB effectively suppress the polarization of Th2 cells and production of Th2-associated cytokines (IL-5, IL-13, and IL-4) by human peripheral blood mononuclear cells (PBMC). We show that AOB inhibit Th2 cell polarization not through Th1-mediated suppression, but rather through mechanisms involving the anti-inflammatory cytokine IL-10 and the potential inhibition of dendritic cells, as evidenced by a reduction in Major Histocompatibility Complex Class II (MHC II) and CD86 expression following AOB treatment. This is the first report of immunomodulatory properties of AOB, and provides initial support for the development of AOB as a potential therapeutic for atopic diseases.