The impact of site-specific digital histology signatures on deep learning model accuracy and bias

Deep learning models have been trained on The Cancer Genome Atlas to predict numerous features directly from histology, including survival, gene expression patterns, and driver mutations. Here, the authors demonstrate that site-specific histologic signatures can lead to biased estimates of accuracy...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Frederick M. Howard, James Dolezal, Sara Kochanny, Jefree Schulte, Heather Chen, Lara Heij, Dezheng Huo, Rita Nanda, Olufunmilayo I. Olopade, Jakob N. Kather, Nicole Cipriani, Robert L. Grossman, Alexander T. Pearson
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/63d9acc99eb6472c87b682f300c925c8
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Deep learning models have been trained on The Cancer Genome Atlas to predict numerous features directly from histology, including survival, gene expression patterns, and driver mutations. Here, the authors demonstrate that site-specific histologic signatures can lead to biased estimates of accuracy for such models, and propose a method to minimize such bias.