The impact of site-specific digital histology signatures on deep learning model accuracy and bias
Deep learning models have been trained on The Cancer Genome Atlas to predict numerous features directly from histology, including survival, gene expression patterns, and driver mutations. Here, the authors demonstrate that site-specific histologic signatures can lead to biased estimates of accuracy...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/63d9acc99eb6472c87b682f300c925c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Deep learning models have been trained on The Cancer Genome Atlas to predict numerous features directly from histology, including survival, gene expression patterns, and driver mutations. Here, the authors demonstrate that site-specific histologic signatures can lead to biased estimates of accuracy for such models, and propose a method to minimize such bias. |
---|