The impact of site-specific digital histology signatures on deep learning model accuracy and bias
Deep learning models have been trained on The Cancer Genome Atlas to predict numerous features directly from histology, including survival, gene expression patterns, and driver mutations. Here, the authors demonstrate that site-specific histologic signatures can lead to biased estimates of accuracy...
Guardado en:
Autores principales: | Frederick M. Howard, James Dolezal, Sara Kochanny, Jefree Schulte, Heather Chen, Lara Heij, Dezheng Huo, Rita Nanda, Olufunmilayo I. Olopade, Jakob N. Kather, Nicole Cipriani, Robert L. Grossman, Alexander T. Pearson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/63d9acc99eb6472c87b682f300c925c8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Localization accuracy of multiple magnets in a myokinetic control interface
por: Marta Gherardini, et al.
Publicado: (2021) -
Correction to: Bias, dispersion, and accuracy of genomic predictions for feedlot and carcase traits in Australian Angus steers
por: Pâmela A. Alexandre, et al.
Publicado: (2021) -
Judgments in the Sharing Economy: The Effect of User-Generated Trust and Reputation Information on Decision-Making Accuracy and Bias
por: Mircea Zloteanu, et al.
Publicado: (2021) -
Leveraging heterogeneity across multiple datasets increases cell-mixture deconvolution accuracy and reduces biological and technical biases
por: Francesco Vallania, et al.
Publicado: (2018) -
Comparison of micro-CT imaging and histology for approximal caries detection
por: C. Boca, et al.
Publicado: (2017)