A deep learning approach for complex microstructure inference

Segmentation and classification of microstructures are required by quality control and materials development. The authors apply deep learning for the segmentation of complex phase steel microstructures, providing a bridge between experimental and computational methods for materials analysis.

Guardado en:
Detalles Bibliográficos
Autores principales: Ali Riza Durmaz, Martin Müller, Bo Lei, Akhil Thomas, Dominik Britz, Elizabeth A. Holm, Chris Eberl, Frank Mücklich, Peter Gumbsch
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/63e5e4b34b434b15a778aed27ab99f3f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:63e5e4b34b434b15a778aed27ab99f3f
record_format dspace
spelling oai:doaj.org-article:63e5e4b34b434b15a778aed27ab99f3f2021-11-08T11:07:30ZA deep learning approach for complex microstructure inference10.1038/s41467-021-26565-52041-1723https://doaj.org/article/63e5e4b34b434b15a778aed27ab99f3f2021-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-26565-5https://doaj.org/toc/2041-1723Segmentation and classification of microstructures are required by quality control and materials development. The authors apply deep learning for the segmentation of complex phase steel microstructures, providing a bridge between experimental and computational methods for materials analysis.Ali Riza DurmazMartin MüllerBo LeiAkhil ThomasDominik BritzElizabeth A. HolmChris EberlFrank MücklichPeter GumbschNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Ali Riza Durmaz
Martin Müller
Bo Lei
Akhil Thomas
Dominik Britz
Elizabeth A. Holm
Chris Eberl
Frank Mücklich
Peter Gumbsch
A deep learning approach for complex microstructure inference
description Segmentation and classification of microstructures are required by quality control and materials development. The authors apply deep learning for the segmentation of complex phase steel microstructures, providing a bridge between experimental and computational methods for materials analysis.
format article
author Ali Riza Durmaz
Martin Müller
Bo Lei
Akhil Thomas
Dominik Britz
Elizabeth A. Holm
Chris Eberl
Frank Mücklich
Peter Gumbsch
author_facet Ali Riza Durmaz
Martin Müller
Bo Lei
Akhil Thomas
Dominik Britz
Elizabeth A. Holm
Chris Eberl
Frank Mücklich
Peter Gumbsch
author_sort Ali Riza Durmaz
title A deep learning approach for complex microstructure inference
title_short A deep learning approach for complex microstructure inference
title_full A deep learning approach for complex microstructure inference
title_fullStr A deep learning approach for complex microstructure inference
title_full_unstemmed A deep learning approach for complex microstructure inference
title_sort deep learning approach for complex microstructure inference
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/63e5e4b34b434b15a778aed27ab99f3f
work_keys_str_mv AT alirizadurmaz adeeplearningapproachforcomplexmicrostructureinference
AT martinmuller adeeplearningapproachforcomplexmicrostructureinference
AT bolei adeeplearningapproachforcomplexmicrostructureinference
AT akhilthomas adeeplearningapproachforcomplexmicrostructureinference
AT dominikbritz adeeplearningapproachforcomplexmicrostructureinference
AT elizabethaholm adeeplearningapproachforcomplexmicrostructureinference
AT chriseberl adeeplearningapproachforcomplexmicrostructureinference
AT frankmucklich adeeplearningapproachforcomplexmicrostructureinference
AT petergumbsch adeeplearningapproachforcomplexmicrostructureinference
AT alirizadurmaz deeplearningapproachforcomplexmicrostructureinference
AT martinmuller deeplearningapproachforcomplexmicrostructureinference
AT bolei deeplearningapproachforcomplexmicrostructureinference
AT akhilthomas deeplearningapproachforcomplexmicrostructureinference
AT dominikbritz deeplearningapproachforcomplexmicrostructureinference
AT elizabethaholm deeplearningapproachforcomplexmicrostructureinference
AT chriseberl deeplearningapproachforcomplexmicrostructureinference
AT frankmucklich deeplearningapproachforcomplexmicrostructureinference
AT petergumbsch deeplearningapproachforcomplexmicrostructureinference
_version_ 1718442337957314560