A deep learning approach for complex microstructure inference
Segmentation and classification of microstructures are required by quality control and materials development. The authors apply deep learning for the segmentation of complex phase steel microstructures, providing a bridge between experimental and computational methods for materials analysis.
Enregistré dans:
Auteurs principaux: | Ali Riza Durmaz, Martin Müller, Bo Lei, Akhil Thomas, Dominik Britz, Elizabeth A. Holm, Chris Eberl, Frank Mücklich, Peter Gumbsch |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/63e5e4b34b434b15a778aed27ab99f3f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Microstructural Classification of Bainitic Subclasses in Low-Carbon Multi-Phase Steels Using Machine Learning Techniques
par: Martin Müller, et autres
Publié: (2021) -
Bayesian phylodynamic inference with complex models.
par: Erik M Volz, et autres
Publié: (2018) -
Super-resolving material microstructure image via deep learning for microstructure characterization and mechanical behavior analysis
par: Jaimyun Jung, et autres
Publié: (2021) -
Effect of heat input on microstructure and toughness of CGHAZ of deep-sea X70
par: Zhiwen LIU, et autres
Publié: (2021) -
Limitations of Correlation-Based Inference in Complex Virus-Microbe Communities
par: Ashley R. Coenen, et autres
Publié: (2018)