RNAi-dependent and independent control of LINE1 accumulation and mobility in mouse embryonic stem cells.
In most mouse tissues, long-interspersed elements-1 (L1s) are silenced via methylation of their 5'-untranslated regions (5'-UTR). A gradual loss-of-methylation in pre-implantation embryos coincides with L1 retrotransposition in blastocysts, generating potentially harmful mutations. Here, w...
Guardado en:
Autores principales: | , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/63eb929027224e2ca85621dfb61baf93 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In most mouse tissues, long-interspersed elements-1 (L1s) are silenced via methylation of their 5'-untranslated regions (5'-UTR). A gradual loss-of-methylation in pre-implantation embryos coincides with L1 retrotransposition in blastocysts, generating potentially harmful mutations. Here, we show that Dicer- and Ago2-dependent RNAi restricts L1 accumulation and retrotransposition in undifferentiated mouse embryonic stem cells (mESCs), derived from blastocysts. RNAi correlates with production of Dicer-dependent 22-nt small RNAs mapping to overlapping sense/antisense transcripts produced from the L1 5'-UTR. However, RNA-surveillance pathways simultaneously degrade these transcripts and, consequently, confound the anti-L1 RNAi response. In Dicer(-/-) mESC complementation experiments involving ectopic Dicer expression, L1 silencing was rescued in cells in which microRNAs remained strongly depleted. Furthermore, these cells proliferated and differentiated normally, unlike their non-complemented counterparts. These results shed new light on L1 biology, uncover defensive, in addition to regulatory roles for RNAi, and raise questions on the differentiation defects of Dicer(-/-) mESCs. |
---|