Fractional q-Integral Operators for the Product of a q-Polynomial and q-Analogue of the I-Functions and Their Applications

In this article, we derive four theorems concerning the fractional integral image for the product of the q-analogue of general class of polynomials with the q-analogue of the I-functions. To illustrate our main results, we use q-fractional integrals of Erdélyi–Kober type and generalized Weyl type fr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: V.K. Vyas, Ali A. Al-Jarrah, D. L. Suthar, Nigussie Abeye
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/640d9a39673748f7accbf5477f146598
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this article, we derive four theorems concerning the fractional integral image for the product of the q-analogue of general class of polynomials with the q-analogue of the I-functions. To illustrate our main results, we use q-fractional integrals of Erdélyi–Kober type and generalized Weyl type fractional operators. The study concludes with a variety of results that can be obtained by using the relationship between the Erdélyi–Kober type and the Riemann–Liouville q-fractional integrals, as well as the relationship between the generalized Weyl type and the Weyl type q-fractional integrals.