Separate Fractional (<i>p</i>,<i>q</i>)-Integrodifference Equations via Nonlocal Fractional (<i>p</i>,<i>q</i>)-Integral Boundary Conditions
In this paper, we study a boundary value problem involving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/6426018d69434a37b8d889c77644d7f7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:6426018d69434a37b8d889c77644d7f7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6426018d69434a37b8d889c77644d7f72021-11-25T19:07:37ZSeparate Fractional (<i>p</i>,<i>q</i>)-Integrodifference Equations via Nonlocal Fractional (<i>p</i>,<i>q</i>)-Integral Boundary Conditions10.3390/sym131122122073-8994https://doaj.org/article/6426018d69434a37b8d889c77644d7f72021-11-01T00:00:00Zhttps://www.mdpi.com/2073-8994/13/11/2212https://doaj.org/toc/2073-8994In this paper, we study a boundary value problem involving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-integrodifference equations, supplemented with nonlocal fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-integral boundary conditions with respect to asymmetric operators. First, we convert the given nonlinear problem into a fixed-point problem, by considering a linear variant of the problem at hand. Once the fixed-point operator is available, existence and uniqueness results are established using the classical Banach’s and Schaefer’s fixed-point theorems. The application of the main results is demonstrated by presenting numerical examples. Moreover, we study some properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-integral that are used in our study.Thongchai DumrongpokaphanSotiris K. NtouyasThanin SitthiwiratthamMDPI AGarticlefractional (<i>p</i>,<i>q</i>)-integralfractional (<i>p</i>,<i>q</i>)-differencenonlocal boundary value problemsexistenceMathematicsQA1-939ENSymmetry, Vol 13, Iss 2212, p 2212 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
fractional (<i>p</i>,<i>q</i>)-integral fractional (<i>p</i>,<i>q</i>)-difference nonlocal boundary value problems existence Mathematics QA1-939 |
spellingShingle |
fractional (<i>p</i>,<i>q</i>)-integral fractional (<i>p</i>,<i>q</i>)-difference nonlocal boundary value problems existence Mathematics QA1-939 Thongchai Dumrongpokaphan Sotiris K. Ntouyas Thanin Sitthiwirattham Separate Fractional (<i>p</i>,<i>q</i>)-Integrodifference Equations via Nonlocal Fractional (<i>p</i>,<i>q</i>)-Integral Boundary Conditions |
description |
In this paper, we study a boundary value problem involving <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-integrodifference equations, supplemented with nonlocal fractional <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-integral boundary conditions with respect to asymmetric operators. First, we convert the given nonlinear problem into a fixed-point problem, by considering a linear variant of the problem at hand. Once the fixed-point operator is available, existence and uniqueness results are established using the classical Banach’s and Schaefer’s fixed-point theorems. The application of the main results is demonstrated by presenting numerical examples. Moreover, we study some properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></mrow></semantics></math></inline-formula>-integral that are used in our study. |
format |
article |
author |
Thongchai Dumrongpokaphan Sotiris K. Ntouyas Thanin Sitthiwirattham |
author_facet |
Thongchai Dumrongpokaphan Sotiris K. Ntouyas Thanin Sitthiwirattham |
author_sort |
Thongchai Dumrongpokaphan |
title |
Separate Fractional (<i>p</i>,<i>q</i>)-Integrodifference Equations via Nonlocal Fractional (<i>p</i>,<i>q</i>)-Integral Boundary Conditions |
title_short |
Separate Fractional (<i>p</i>,<i>q</i>)-Integrodifference Equations via Nonlocal Fractional (<i>p</i>,<i>q</i>)-Integral Boundary Conditions |
title_full |
Separate Fractional (<i>p</i>,<i>q</i>)-Integrodifference Equations via Nonlocal Fractional (<i>p</i>,<i>q</i>)-Integral Boundary Conditions |
title_fullStr |
Separate Fractional (<i>p</i>,<i>q</i>)-Integrodifference Equations via Nonlocal Fractional (<i>p</i>,<i>q</i>)-Integral Boundary Conditions |
title_full_unstemmed |
Separate Fractional (<i>p</i>,<i>q</i>)-Integrodifference Equations via Nonlocal Fractional (<i>p</i>,<i>q</i>)-Integral Boundary Conditions |
title_sort |
separate fractional (<i>p</i>,<i>q</i>)-integrodifference equations via nonlocal fractional (<i>p</i>,<i>q</i>)-integral boundary conditions |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/6426018d69434a37b8d889c77644d7f7 |
work_keys_str_mv |
AT thongchaidumrongpokaphan separatefractionalipiiqiintegrodifferenceequationsvianonlocalfractionalipiiqiintegralboundaryconditions AT sotiriskntouyas separatefractionalipiiqiintegrodifferenceequationsvianonlocalfractionalipiiqiintegralboundaryconditions AT thaninsitthiwirattham separatefractionalipiiqiintegrodifferenceequationsvianonlocalfractionalipiiqiintegralboundaryconditions |
_version_ |
1718410281666740224 |