A Real-Time Collision Avoidance Strategy in Dynamic Airspace Based on Dynamic Artificial Potential Field Algorithm
The key to the integration of unmanned aircrafts in the national airspace is to prevent them from colliding with the other traffics in the airspace. However, it is a great challenge to generate a safe, stable and robust collision-free path for unmanned aircraft system (UAS), a.k.a. unmanned aircraft...
Guardado en:
Autores principales: | Yanshuang Du, Xuejun Zhang, Zunli Nie |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/64464cd2f8f54da6bd976040c24a19a6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Quadrotor Autonomous Navigation in Semi-Known Environments Based on Deep Reinforcement Learning
por: Jiajun Ou, et al.
Publicado: (2021) -
Savonia's Teaching, Research and Development Activities on Unmanned Aircraft Systems
por: Rajeev Kanth, et al.
Publicado: (2021) -
Enhanced Potential Field-Based Collision Avoidance in Cluttered Three-Dimensional Urban Environments
por: Daegyun Choi, et al.
Publicado: (2021) -
Drone-Based Autonomous Motion Planning System for Outdoor Environments under Object Detection Uncertainty
por: Juan Sandino, et al.
Publicado: (2021) -
A RFID-Integrated Framework for Tag Anti-Collision in UAV-Aided VANETs
por: Yixin He, et al.
Publicado: (2021)