Variational principle for scale-free network motifs

Abstract For scale-free networks with degrees following a power law with an exponent τ ∈ (2, 3), the structures of motifs (small subgraphs) are not yet well understood. We introduce a method designed to identify the dominant structure of any given motif as the solution of an optimization problem. Th...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Clara Stegehuis, Remco van der Hofstad, Johan S. H. van Leeuwaarden
Format: article
Langue:EN
Publié: Nature Portfolio 2019
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/6459f12b53234a38ac2b0e9e373737b0
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Abstract For scale-free networks with degrees following a power law with an exponent τ ∈ (2, 3), the structures of motifs (small subgraphs) are not yet well understood. We introduce a method designed to identify the dominant structure of any given motif as the solution of an optimization problem. The unique optimizer describes the degrees of the vertices that together span the most likely motif, resulting in explicit asymptotic formulas for the motif count and its fluctuations. We then classify all motifs into two categories: motifs with small and large fluctuations.