Variational principle for scale-free network motifs
Abstract For scale-free networks with degrees following a power law with an exponent τ ∈ (2, 3), the structures of motifs (small subgraphs) are not yet well understood. We introduce a method designed to identify the dominant structure of any given motif as the solution of an optimization problem. Th...
Saved in:
Main Authors: | , , |
---|---|
Format: | article |
Language: | EN |
Published: |
Nature Portfolio
2019
|
Subjects: | |
Online Access: | https://doaj.org/article/6459f12b53234a38ac2b0e9e373737b0 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
id |
oai:doaj.org-article:6459f12b53234a38ac2b0e9e373737b0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:6459f12b53234a38ac2b0e9e373737b02021-12-02T15:08:32ZVariational principle for scale-free network motifs10.1038/s41598-019-43050-82045-2322https://doaj.org/article/6459f12b53234a38ac2b0e9e373737b02019-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-019-43050-8https://doaj.org/toc/2045-2322Abstract For scale-free networks with degrees following a power law with an exponent τ ∈ (2, 3), the structures of motifs (small subgraphs) are not yet well understood. We introduce a method designed to identify the dominant structure of any given motif as the solution of an optimization problem. The unique optimizer describes the degrees of the vertices that together span the most likely motif, resulting in explicit asymptotic formulas for the motif count and its fluctuations. We then classify all motifs into two categories: motifs with small and large fluctuations.Clara StegehuisRemco van der HofstadJohan S. H. van LeeuwaardenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-10 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Clara Stegehuis Remco van der Hofstad Johan S. H. van Leeuwaarden Variational principle for scale-free network motifs |
description |
Abstract For scale-free networks with degrees following a power law with an exponent τ ∈ (2, 3), the structures of motifs (small subgraphs) are not yet well understood. We introduce a method designed to identify the dominant structure of any given motif as the solution of an optimization problem. The unique optimizer describes the degrees of the vertices that together span the most likely motif, resulting in explicit asymptotic formulas for the motif count and its fluctuations. We then classify all motifs into two categories: motifs with small and large fluctuations. |
format |
article |
author |
Clara Stegehuis Remco van der Hofstad Johan S. H. van Leeuwaarden |
author_facet |
Clara Stegehuis Remco van der Hofstad Johan S. H. van Leeuwaarden |
author_sort |
Clara Stegehuis |
title |
Variational principle for scale-free network motifs |
title_short |
Variational principle for scale-free network motifs |
title_full |
Variational principle for scale-free network motifs |
title_fullStr |
Variational principle for scale-free network motifs |
title_full_unstemmed |
Variational principle for scale-free network motifs |
title_sort |
variational principle for scale-free network motifs |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/6459f12b53234a38ac2b0e9e373737b0 |
work_keys_str_mv |
AT clarastegehuis variationalprincipleforscalefreenetworkmotifs AT remcovanderhofstad variationalprincipleforscalefreenetworkmotifs AT johanshvanleeuwaarden variationalprincipleforscalefreenetworkmotifs |
_version_ |
1718388062722981888 |