Variational principle for scale-free network motifs

Abstract For scale-free networks with degrees following a power law with an exponent τ ∈ (2, 3), the structures of motifs (small subgraphs) are not yet well understood. We introduce a method designed to identify the dominant structure of any given motif as the solution of an optimization problem. Th...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Clara Stegehuis, Remco van der Hofstad, Johan S. H. van Leeuwaarden
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
R
Q
Acceso en línea:https://doaj.org/article/6459f12b53234a38ac2b0e9e373737b0
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6459f12b53234a38ac2b0e9e373737b0
record_format dspace
spelling oai:doaj.org-article:6459f12b53234a38ac2b0e9e373737b02021-12-02T15:08:32ZVariational principle for scale-free network motifs10.1038/s41598-019-43050-82045-2322https://doaj.org/article/6459f12b53234a38ac2b0e9e373737b02019-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-019-43050-8https://doaj.org/toc/2045-2322Abstract For scale-free networks with degrees following a power law with an exponent τ ∈ (2, 3), the structures of motifs (small subgraphs) are not yet well understood. We introduce a method designed to identify the dominant structure of any given motif as the solution of an optimization problem. The unique optimizer describes the degrees of the vertices that together span the most likely motif, resulting in explicit asymptotic formulas for the motif count and its fluctuations. We then classify all motifs into two categories: motifs with small and large fluctuations.Clara StegehuisRemco van der HofstadJohan S. H. van LeeuwaardenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 9, Iss 1, Pp 1-10 (2019)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Clara Stegehuis
Remco van der Hofstad
Johan S. H. van Leeuwaarden
Variational principle for scale-free network motifs
description Abstract For scale-free networks with degrees following a power law with an exponent τ ∈ (2, 3), the structures of motifs (small subgraphs) are not yet well understood. We introduce a method designed to identify the dominant structure of any given motif as the solution of an optimization problem. The unique optimizer describes the degrees of the vertices that together span the most likely motif, resulting in explicit asymptotic formulas for the motif count and its fluctuations. We then classify all motifs into two categories: motifs with small and large fluctuations.
format article
author Clara Stegehuis
Remco van der Hofstad
Johan S. H. van Leeuwaarden
author_facet Clara Stegehuis
Remco van der Hofstad
Johan S. H. van Leeuwaarden
author_sort Clara Stegehuis
title Variational principle for scale-free network motifs
title_short Variational principle for scale-free network motifs
title_full Variational principle for scale-free network motifs
title_fullStr Variational principle for scale-free network motifs
title_full_unstemmed Variational principle for scale-free network motifs
title_sort variational principle for scale-free network motifs
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/6459f12b53234a38ac2b0e9e373737b0
work_keys_str_mv AT clarastegehuis variationalprincipleforscalefreenetworkmotifs
AT remcovanderhofstad variationalprincipleforscalefreenetworkmotifs
AT johanshvanleeuwaarden variationalprincipleforscalefreenetworkmotifs
_version_ 1718388062722981888