Conserved linear dynamics of single-molecule Brownian motion
The general consensus is that random walking, such as Brownian motion, follows a linear dependence of diffusion motions with time. Here, the authors show that random motion of macromolecules in an isotropic fluid could be governed by non-random dynamics that are only detectable in their relative mot...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/645f07945a0e46678565fcbb826b9a60 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | The general consensus is that random walking, such as Brownian motion, follows a linear dependence of diffusion motions with time. Here, the authors show that random motion of macromolecules in an isotropic fluid could be governed by non-random dynamics that are only detectable in their relative motions. |
---|