Evaluating different machine learning methods to simulate runoff from extensive green roofs
<p>Green roofs are increasingly popular measures to permanently reduce or delay storm-water runoff. The main objective of the study was to examine the potential of using machine learning (ML) to simulate runoff from green roofs to estimate their hydrological performance. Four machine learning...
Guardado en:
Autores principales: | E. M. H. Abdalla, V. Pons, V. Stovin, S. De-Ville, E. Fassman-Beck, K. Alfredsen, T. M. Muthanna |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Copernicus Publications
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/646cf6d51e8544dbbb45cf9ead935d61 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Experimental study on the selection of common adsorption substrates for extensive green roofs (EGRs)
por: Chen Xu, et al.
Publicado: (2021) -
The rainwater retention mechanisms in extensive green roofs with ten different structural configurations
por: Jun Wang, et al.
Publicado: (2021) -
The impact of wind on the rainfall–runoff relationship in urban high-rise building areas
por: X. Gao, et al.
Publicado: (2021) -
Pollutant first flush identification and its implications for urban runoff pollution control: a roof and road runoff case study in Beijing, China
por: Wei Zhang, et al.
Publicado: (2021) -
Design flood estimation for global river networks based on machine learning models
por: G. Zhao, et al.
Publicado: (2021)