Simulation of the optical properties of gold nanoparticles on sodium alginate

In this contribution, we report on the simulation of optical reflectance and transmittance (R&T) taken on a set of gold nanoparticles thin film, deposited on sodium alginate by magnetron sputtering. The gold layer is very thin, so that the films are not continuous and the material is arranged in...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Summonte Caterina, Maccagnani Piera, Maurizi Alberto, Pizzochero Giulio, Bolognini Gabriele
Formato: article
Lenguaje:EN
Publicado: EDP Sciences 2021
Materias:
Acceso en línea:https://doaj.org/article/646d65600092489ca2a284078f699945
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this contribution, we report on the simulation of optical reflectance and transmittance (R&T) taken on a set of gold nanoparticles thin film, deposited on sodium alginate by magnetron sputtering. The gold layer is very thin, so that the films are not continuous and the material is arranged in nanostructured layers. R&T spectra are simulated using the Generalized Transfer Matrix method applied to the film-on-substrate model. The gold NP films are simulated using the Drude-Lorentz model, by taking into account that the optical function of nanostructured gold exhibits increased collision frequency and reduced relaxation time. Moreover, the signal of localized surface plasmon, evident in the spectra, is simulated by introducing a dedicated modified Lorentz oscillator. The experimental results are well reproduced by the applied model. All trends (amplitude and energy position of the plasmon oscillator, film thickness, relaxation time) are correlated with the deposition parameters. The procedure represents a useful tool in the characterisation of such nanoparticles thin films.