Automated phenotyping of mosquito larvae enables high-throughput screening for novel larvicides and offers potential for smartphone-based detection of larval insecticide resistance.

Pyrethroid-impregnated nets have contributed significantly to halving the burden of malaria but resistance threatens their future efficacy and the pipeline of new insecticides is short. Here we report that an invertebrate automated phenotyping platform (INVAPP), combined with the algorithm Paragon,...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Steven D Buckingham, Frederick A Partridge, Beth C Poulton, Benjamin S Miller, Rachel A McKendry, Gareth J Lycett, David B Sattelle
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/646eab1af88341da972b15d8a84768ef
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Pyrethroid-impregnated nets have contributed significantly to halving the burden of malaria but resistance threatens their future efficacy and the pipeline of new insecticides is short. Here we report that an invertebrate automated phenotyping platform (INVAPP), combined with the algorithm Paragon, provides a robust system for measuring larval motility in Anopheles gambiae (and An. coluzzi) as well as Aedes aegypti with the capacity for high-throughput screening for new larvicides. By this means, we reliably quantified both time- and concentration-dependent actions of chemical insecticides faster than using the WHO standard larval assay. We illustrate the effectiveness of the system using an established larvicide (temephos) and demonstrate its capacity for library-scale chemical screening using the Medicines for Malaria Venture (MMV) Pathogen Box library. As a proof-of-principle, this library screen identified a compound, subsequently confirmed to be tolfenpyrad, as an effective larvicide. We have also used the INVAPP / Paragon system to compare responses in larvae derived from WHO classified deltamethrin resistant and sensitive mosquitoes. We show how this approach to monitoring larval response to insecticides can be adapted for use with a smartphone camera application and therefore has potential for further development as a simple portable field-assay with associated real-time, geo-located information to identify hotspots.