A Note on a Meshless Method for Fractional Laplacian at Arbitrary Irregular Meshes

The existence and uniqueness of the discrete solutions of a porous medium equation with diffusion are demonstrated. The Cauchy problem contains a fractional Laplacian and it is equivalent to the extension formulation in the sense of trace and harmonic extension operators. By using the generalized fi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ángel García, Mihaela Negreanu, Francisco Ureña, Antonio M. Vargas
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/647122859e5a44fea10f14b86b3ca2d7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:647122859e5a44fea10f14b86b3ca2d7
record_format dspace
spelling oai:doaj.org-article:647122859e5a44fea10f14b86b3ca2d72021-11-25T18:16:28ZA Note on a Meshless Method for Fractional Laplacian at Arbitrary Irregular Meshes10.3390/math92228432227-7390https://doaj.org/article/647122859e5a44fea10f14b86b3ca2d72021-11-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/22/2843https://doaj.org/toc/2227-7390The existence and uniqueness of the discrete solutions of a porous medium equation with diffusion are demonstrated. The Cauchy problem contains a fractional Laplacian and it is equivalent to the extension formulation in the sense of trace and harmonic extension operators. By using the generalized finite difference method, we obtain the convergence of the numerical solution to the classical/theoretical solution of the equation for nonnegative initial data sufficiently smooth and bounded. This procedure allows us to use meshes with complicated geometry (more realistic) or with an irregular distribution of nodes (providing more accurate solutions where needed). Some numerical results are presented in arbitrary irregular meshes to illustrate the potential of the method.Ángel GarcíaMihaela NegreanuFrancisco UreñaAntonio M. VargasMDPI AGarticlefractional Laplaciangeneralized finite difference methoddiscrete maximum principleconvergenceMathematicsQA1-939ENMathematics, Vol 9, Iss 2843, p 2843 (2021)
institution DOAJ
collection DOAJ
language EN
topic fractional Laplacian
generalized finite difference method
discrete maximum principle
convergence
Mathematics
QA1-939
spellingShingle fractional Laplacian
generalized finite difference method
discrete maximum principle
convergence
Mathematics
QA1-939
Ángel García
Mihaela Negreanu
Francisco Ureña
Antonio M. Vargas
A Note on a Meshless Method for Fractional Laplacian at Arbitrary Irregular Meshes
description The existence and uniqueness of the discrete solutions of a porous medium equation with diffusion are demonstrated. The Cauchy problem contains a fractional Laplacian and it is equivalent to the extension formulation in the sense of trace and harmonic extension operators. By using the generalized finite difference method, we obtain the convergence of the numerical solution to the classical/theoretical solution of the equation for nonnegative initial data sufficiently smooth and bounded. This procedure allows us to use meshes with complicated geometry (more realistic) or with an irregular distribution of nodes (providing more accurate solutions where needed). Some numerical results are presented in arbitrary irregular meshes to illustrate the potential of the method.
format article
author Ángel García
Mihaela Negreanu
Francisco Ureña
Antonio M. Vargas
author_facet Ángel García
Mihaela Negreanu
Francisco Ureña
Antonio M. Vargas
author_sort Ángel García
title A Note on a Meshless Method for Fractional Laplacian at Arbitrary Irregular Meshes
title_short A Note on a Meshless Method for Fractional Laplacian at Arbitrary Irregular Meshes
title_full A Note on a Meshless Method for Fractional Laplacian at Arbitrary Irregular Meshes
title_fullStr A Note on a Meshless Method for Fractional Laplacian at Arbitrary Irregular Meshes
title_full_unstemmed A Note on a Meshless Method for Fractional Laplacian at Arbitrary Irregular Meshes
title_sort note on a meshless method for fractional laplacian at arbitrary irregular meshes
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/647122859e5a44fea10f14b86b3ca2d7
work_keys_str_mv AT angelgarcia anoteonameshlessmethodforfractionallaplacianatarbitraryirregularmeshes
AT mihaelanegreanu anoteonameshlessmethodforfractionallaplacianatarbitraryirregularmeshes
AT franciscourena anoteonameshlessmethodforfractionallaplacianatarbitraryirregularmeshes
AT antoniomvargas anoteonameshlessmethodforfractionallaplacianatarbitraryirregularmeshes
AT angelgarcia noteonameshlessmethodforfractionallaplacianatarbitraryirregularmeshes
AT mihaelanegreanu noteonameshlessmethodforfractionallaplacianatarbitraryirregularmeshes
AT franciscourena noteonameshlessmethodforfractionallaplacianatarbitraryirregularmeshes
AT antoniomvargas noteonameshlessmethodforfractionallaplacianatarbitraryirregularmeshes
_version_ 1718411385111576576