Curcumin and Radiotherapy Exert Synergistic Anti-Glioma Effect In Vitro

Curcumin, a bioactive polyphenol, is known to have anticancer properties. In this study, the effectiveness of curcumin pretreatment as a strategy for radio-sensitizing glioblastoma cell lines was explored. For this, U87 and T98 cells were treated with curcumin, exposed to 2 Gy or 4 Gy of irradiation...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Vasiliki Zoi, Vasiliki Galani, Evrysthenis Vartholomatos, Natalia Zacharopoulou, Eftichia Tsoumeleka, Georgios Gkizas, Georgios Bozios, Pericles Tsekeris, Ieremias Chousidis, Ioannis Leonardos, Andreas G. Tzakos, Athanasios P. Kyritsis, George A. Alexiou
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/647864cbaf384089830a4e5ade7c45c9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Curcumin, a bioactive polyphenol, is known to have anticancer properties. In this study, the effectiveness of curcumin pretreatment as a strategy for radio-sensitizing glioblastoma cell lines was explored. For this, U87 and T98 cells were treated with curcumin, exposed to 2 Gy or 4 Gy of irradiation, and the combined effect was compared to the antiproliferative effect of each agent when given individually. Cell viability and proliferation were evaluated with the trypan blue exclusion assay and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The synergistic effects of the combination treatment were analyzed with CompuSyn software. To examine how the co-treatment affected different phases of cell-cycle progression, a cell-cycle analysis via flow cytometry was performed. Treatment with curcumin and radiation significantly reduced cell viability in both U87 and T98 cell lines. The combination treatment arrested both cell lines at the G2/M phase to a higher extent than radiation or curcumin treatment alone. The synergistic effect of curcumin when combined with temozolomide resulted in increased tumor cell death. Our results demonstrate for the first time that low doses of curcumin and irradiation exhibit a strong synergistic anti-proliferative effect on glioblastoma cells in vitro. Therefore, this combination may represent an innovative and promising strategy for the treatment of glioblastoma, and further studies are needed to fully understand the molecular mechanism underlying this effect.