Disruption of Apicoplast Biogenesis by Chemical Stabilization of an Imported Protein Evades the Delayed-Death Phenotype in Malaria Parasites

ABSTRACT Malaria parasites (Plasmodium spp.) contain a nonphotosynthetic plastid organelle called the apicoplast, which houses essential metabolic pathways and is required throughout the parasite life cycle. The biogenesis pathways responsible for apicoplast growth, division, and inheritance are of...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Michael J. Boucher, Ellen Yeh
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2019
Materias:
Acceso en línea:https://doaj.org/article/6495b587a66f43b79dc0362445838590
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:6495b587a66f43b79dc0362445838590
record_format dspace
spelling oai:doaj.org-article:6495b587a66f43b79dc03624458385902021-11-15T15:22:04ZDisruption of Apicoplast Biogenesis by Chemical Stabilization of an Imported Protein Evades the Delayed-Death Phenotype in Malaria Parasites10.1128/mSphere.00710-182379-5042https://doaj.org/article/6495b587a66f43b79dc03624458385902019-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00710-18https://doaj.org/toc/2379-5042ABSTRACT Malaria parasites (Plasmodium spp.) contain a nonphotosynthetic plastid organelle called the apicoplast, which houses essential metabolic pathways and is required throughout the parasite life cycle. The biogenesis pathways responsible for apicoplast growth, division, and inheritance are of key interest as potential drug targets. Unfortunately, several known apicoplast biogenesis inhibitors are of limited clinical utility because they cause a peculiar “delayed-death” phenotype in which parasites do not stop replicating until the second lytic cycle posttreatment. Identifying apicoplast biogenesis pathways that avoid the delayed-death phenomenon is a priority. Here, we generated parasites targeting a murine dihydrofolate reductase (mDHFR) domain, which can be conditionally stabilized with the compound WR99210, to the apicoplast. Surprisingly, chemical stabilization of this exogenous fusion protein disrupted parasite growth in an apicoplast-specific manner after a single lytic cycle. WR99210-treated parasites exhibited an apicoplast biogenesis defect beginning within the same lytic cycle as drug treatment, indicating that stabilized mDHFR perturbs a non-delayed-death biogenesis pathway. While the precise mechanism-of-action of the stabilized fusion is still unclear, we hypothesize that it inhibits apicoplast protein import by stalling within and blocking translocons in the apicoplast membranes. IMPORTANCE Malaria is a major cause of global childhood mortality. To sustain progress in disease control made in the last decade, new antimalarial therapies are needed to combat emerging drug resistance. Malaria parasites contain a relict chloroplast called the apicoplast, which harbors new targets for drug discovery. Unfortunately, some drugs targeting apicoplast pathways exhibit a delayed-death phenotype, which results in a slow onset-of-action that precludes their use as fast-acting, frontline therapies. Identification of druggable apicoplast biogenesis factors that will avoid the delayed-death phenotype is an important priority. Here, we find that chemical stabilization of an apicoplast-targeted mDHFR domain disrupts apicoplast biogenesis and inhibits parasite growth after a single lytic cycle, suggesting a non-delayed-death target. Our finding indicates that further interrogation of the mechanism-of-action of this exogenous fusion protein may reveal novel therapeutic avenues.Michael J. BoucherEllen YehAmerican Society for MicrobiologyarticlePlasmodiumapicoplastmalariaorganelle protein importMicrobiologyQR1-502ENmSphere, Vol 4, Iss 1 (2019)
institution DOAJ
collection DOAJ
language EN
topic Plasmodium
apicoplast
malaria
organelle protein import
Microbiology
QR1-502
spellingShingle Plasmodium
apicoplast
malaria
organelle protein import
Microbiology
QR1-502
Michael J. Boucher
Ellen Yeh
Disruption of Apicoplast Biogenesis by Chemical Stabilization of an Imported Protein Evades the Delayed-Death Phenotype in Malaria Parasites
description ABSTRACT Malaria parasites (Plasmodium spp.) contain a nonphotosynthetic plastid organelle called the apicoplast, which houses essential metabolic pathways and is required throughout the parasite life cycle. The biogenesis pathways responsible for apicoplast growth, division, and inheritance are of key interest as potential drug targets. Unfortunately, several known apicoplast biogenesis inhibitors are of limited clinical utility because they cause a peculiar “delayed-death” phenotype in which parasites do not stop replicating until the second lytic cycle posttreatment. Identifying apicoplast biogenesis pathways that avoid the delayed-death phenomenon is a priority. Here, we generated parasites targeting a murine dihydrofolate reductase (mDHFR) domain, which can be conditionally stabilized with the compound WR99210, to the apicoplast. Surprisingly, chemical stabilization of this exogenous fusion protein disrupted parasite growth in an apicoplast-specific manner after a single lytic cycle. WR99210-treated parasites exhibited an apicoplast biogenesis defect beginning within the same lytic cycle as drug treatment, indicating that stabilized mDHFR perturbs a non-delayed-death biogenesis pathway. While the precise mechanism-of-action of the stabilized fusion is still unclear, we hypothesize that it inhibits apicoplast protein import by stalling within and blocking translocons in the apicoplast membranes. IMPORTANCE Malaria is a major cause of global childhood mortality. To sustain progress in disease control made in the last decade, new antimalarial therapies are needed to combat emerging drug resistance. Malaria parasites contain a relict chloroplast called the apicoplast, which harbors new targets for drug discovery. Unfortunately, some drugs targeting apicoplast pathways exhibit a delayed-death phenotype, which results in a slow onset-of-action that precludes their use as fast-acting, frontline therapies. Identification of druggable apicoplast biogenesis factors that will avoid the delayed-death phenotype is an important priority. Here, we find that chemical stabilization of an apicoplast-targeted mDHFR domain disrupts apicoplast biogenesis and inhibits parasite growth after a single lytic cycle, suggesting a non-delayed-death target. Our finding indicates that further interrogation of the mechanism-of-action of this exogenous fusion protein may reveal novel therapeutic avenues.
format article
author Michael J. Boucher
Ellen Yeh
author_facet Michael J. Boucher
Ellen Yeh
author_sort Michael J. Boucher
title Disruption of Apicoplast Biogenesis by Chemical Stabilization of an Imported Protein Evades the Delayed-Death Phenotype in Malaria Parasites
title_short Disruption of Apicoplast Biogenesis by Chemical Stabilization of an Imported Protein Evades the Delayed-Death Phenotype in Malaria Parasites
title_full Disruption of Apicoplast Biogenesis by Chemical Stabilization of an Imported Protein Evades the Delayed-Death Phenotype in Malaria Parasites
title_fullStr Disruption of Apicoplast Biogenesis by Chemical Stabilization of an Imported Protein Evades the Delayed-Death Phenotype in Malaria Parasites
title_full_unstemmed Disruption of Apicoplast Biogenesis by Chemical Stabilization of an Imported Protein Evades the Delayed-Death Phenotype in Malaria Parasites
title_sort disruption of apicoplast biogenesis by chemical stabilization of an imported protein evades the delayed-death phenotype in malaria parasites
publisher American Society for Microbiology
publishDate 2019
url https://doaj.org/article/6495b587a66f43b79dc0362445838590
work_keys_str_mv AT michaeljboucher disruptionofapicoplastbiogenesisbychemicalstabilizationofanimportedproteinevadesthedelayeddeathphenotypeinmalariaparasites
AT ellenyeh disruptionofapicoplastbiogenesisbychemicalstabilizationofanimportedproteinevadesthedelayeddeathphenotypeinmalariaparasites
_version_ 1718428074069983232