Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces

In this paper, we study higher-order Riesz transforms associated with the inverse Gaussian measure given by πn/2ex2dx on ℝn. We establish Lpℝn,ex2dx-boundedness properties and obtain representations as principal values singular integrals for the higher-order Riesz transforms. New characterizations o...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Jorge J. Betancor, Lourdes Rodríguez-Mesa
Format: article
Langue:EN
Publié: Hindawi Limited 2021
Sujets:
Accès en ligne:https://doaj.org/article/649a212d80d6475b97b1a14c424b8130
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:In this paper, we study higher-order Riesz transforms associated with the inverse Gaussian measure given by πn/2ex2dx on ℝn. We establish Lpℝn,ex2dx-boundedness properties and obtain representations as principal values singular integrals for the higher-order Riesz transforms. New characterizations of the Banach spaces having the UMD property by means of the Riesz transforms and imaginary powers of the operator involved in the inverse Gaussian setting are given.