Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces
In this paper, we study higher-order Riesz transforms associated with the inverse Gaussian measure given by πn/2ex2dx on ℝn. We establish Lpℝn,ex2dx-boundedness properties and obtain representations as principal values singular integrals for the higher-order Riesz transforms. New characterizations o...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/649a212d80d6475b97b1a14c424b8130 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:649a212d80d6475b97b1a14c424b8130 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:649a212d80d6475b97b1a14c424b81302021-11-22T01:10:24ZHigher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces2314-888810.1155/2021/6899603https://doaj.org/article/649a212d80d6475b97b1a14c424b81302021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/6899603https://doaj.org/toc/2314-8888In this paper, we study higher-order Riesz transforms associated with the inverse Gaussian measure given by πn/2ex2dx on ℝn. We establish Lpℝn,ex2dx-boundedness properties and obtain representations as principal values singular integrals for the higher-order Riesz transforms. New characterizations of the Banach spaces having the UMD property by means of the Riesz transforms and imaginary powers of the operator involved in the inverse Gaussian setting are given.Jorge J. BetancorLourdes Rodríguez-MesaHindawi LimitedarticleMathematicsQA1-939ENJournal of Function Spaces, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Mathematics QA1-939 |
spellingShingle |
Mathematics QA1-939 Jorge J. Betancor Lourdes Rodríguez-Mesa Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces |
description |
In this paper, we study higher-order Riesz transforms associated with the inverse Gaussian measure given by πn/2ex2dx on ℝn. We establish Lpℝn,ex2dx-boundedness properties and obtain representations as principal values singular integrals for the higher-order Riesz transforms. New characterizations of the Banach spaces having the UMD property by means of the Riesz transforms and imaginary powers of the operator involved in the inverse Gaussian setting are given. |
format |
article |
author |
Jorge J. Betancor Lourdes Rodríguez-Mesa |
author_facet |
Jorge J. Betancor Lourdes Rodríguez-Mesa |
author_sort |
Jorge J. Betancor |
title |
Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces |
title_short |
Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces |
title_full |
Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces |
title_fullStr |
Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces |
title_full_unstemmed |
Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces |
title_sort |
higher-order riesz transforms in the inverse gaussian setting and umd banach spaces |
publisher |
Hindawi Limited |
publishDate |
2021 |
url |
https://doaj.org/article/649a212d80d6475b97b1a14c424b8130 |
work_keys_str_mv |
AT jorgejbetancor higherorderriesztransformsintheinversegaussiansettingandumdbanachspaces AT lourdesrodriguezmesa higherorderriesztransformsintheinversegaussiansettingandumdbanachspaces |
_version_ |
1718418341812502528 |