Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces

In this paper, we study higher-order Riesz transforms associated with the inverse Gaussian measure given by πn/2ex2dx on ℝn. We establish Lpℝn,ex2dx-boundedness properties and obtain representations as principal values singular integrals for the higher-order Riesz transforms. New characterizations o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jorge J. Betancor, Lourdes Rodríguez-Mesa
Formato: article
Lenguaje:EN
Publicado: Hindawi Limited 2021
Materias:
Acceso en línea:https://doaj.org/article/649a212d80d6475b97b1a14c424b8130
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:649a212d80d6475b97b1a14c424b8130
record_format dspace
spelling oai:doaj.org-article:649a212d80d6475b97b1a14c424b81302021-11-22T01:10:24ZHigher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces2314-888810.1155/2021/6899603https://doaj.org/article/649a212d80d6475b97b1a14c424b81302021-01-01T00:00:00Zhttp://dx.doi.org/10.1155/2021/6899603https://doaj.org/toc/2314-8888In this paper, we study higher-order Riesz transforms associated with the inverse Gaussian measure given by πn/2ex2dx on ℝn. We establish Lpℝn,ex2dx-boundedness properties and obtain representations as principal values singular integrals for the higher-order Riesz transforms. New characterizations of the Banach spaces having the UMD property by means of the Riesz transforms and imaginary powers of the operator involved in the inverse Gaussian setting are given.Jorge J. BetancorLourdes Rodríguez-MesaHindawi LimitedarticleMathematicsQA1-939ENJournal of Function Spaces, Vol 2021 (2021)
institution DOAJ
collection DOAJ
language EN
topic Mathematics
QA1-939
spellingShingle Mathematics
QA1-939
Jorge J. Betancor
Lourdes Rodríguez-Mesa
Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces
description In this paper, we study higher-order Riesz transforms associated with the inverse Gaussian measure given by πn/2ex2dx on ℝn. We establish Lpℝn,ex2dx-boundedness properties and obtain representations as principal values singular integrals for the higher-order Riesz transforms. New characterizations of the Banach spaces having the UMD property by means of the Riesz transforms and imaginary powers of the operator involved in the inverse Gaussian setting are given.
format article
author Jorge J. Betancor
Lourdes Rodríguez-Mesa
author_facet Jorge J. Betancor
Lourdes Rodríguez-Mesa
author_sort Jorge J. Betancor
title Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces
title_short Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces
title_full Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces
title_fullStr Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces
title_full_unstemmed Higher-Order Riesz Transforms in the Inverse Gaussian Setting and UMD Banach Spaces
title_sort higher-order riesz transforms in the inverse gaussian setting and umd banach spaces
publisher Hindawi Limited
publishDate 2021
url https://doaj.org/article/649a212d80d6475b97b1a14c424b8130
work_keys_str_mv AT jorgejbetancor higherorderriesztransformsintheinversegaussiansettingandumdbanachspaces
AT lourdesrodriguezmesa higherorderriesztransformsintheinversegaussiansettingandumdbanachspaces
_version_ 1718418341812502528