Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis
Abstract Osteoarthritis (OA) develops through heterogenous pathophysiologic pathways. As a result, no regulatory agency approved disease modifying OA drugs are available to date. Stratifying knees into MRI-based morphological phenotypes may provide insight into predicting future OA incidence, leadin...
Enregistré dans:
| Auteurs principaux: | Nikan K. Namiri, Jinhee Lee, Bruno Astuto, Felix Liu, Rutwik Shah, Sharmila Majumdar, Valentina Pedoia |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
Nature Portfolio
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/64ad8910af6d4df0b07397fb075826fa |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Uncovering associations between data-driven learned qMRI biomarkers and chronic pain
par: Alejandro G. Morales, et autres
Publié: (2021) -
Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative.
par: Alexander Tack, et autres
Publié: (2021) -
Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative
par: Alexander Tack, et autres
Publié: (2021) -
A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database
par: Alexander Tack, et autres
Publié: (2021) -
Validating deep learning inference during chest X-ray classification for COVID-19 screening
par: Robbie Sadre, et autres
Publié: (2021)