Deep learning for large scale MRI-based morphological phenotyping of osteoarthritis
Abstract Osteoarthritis (OA) develops through heterogenous pathophysiologic pathways. As a result, no regulatory agency approved disease modifying OA drugs are available to date. Stratifying knees into MRI-based morphological phenotypes may provide insight into predicting future OA incidence, leadin...
Guardado en:
Autores principales: | Nikan K. Namiri, Jinhee Lee, Bruno Astuto, Felix Liu, Rutwik Shah, Sharmila Majumdar, Valentina Pedoia |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/64ad8910af6d4df0b07397fb075826fa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Uncovering associations between data-driven learned qMRI biomarkers and chronic pain
por: Alejandro G. Morales, et al.
Publicado: (2021) -
Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative.
por: Alexander Tack, et al.
Publicado: (2021) -
Towards novel osteoarthritis biomarkers: Multi-criteria evaluation of 46,996 segmented knee MRI data from the Osteoarthritis Initiative
por: Alexander Tack, et al.
Publicado: (2021) -
A Multi-Task Deep Learning Method for Detection of Meniscal Tears in MRI Data from the Osteoarthritis Initiative Database
por: Alexander Tack, et al.
Publicado: (2021) -
Validating deep learning inference during chest X-ray classification for COVID-19 screening
por: Robbie Sadre, et al.
Publicado: (2021)