Graph auto-encoding brain networks with applications to analyzing large-scale brain imaging datasets
There has been a huge interest in studying human brain connectomes inferred from different imaging modalities and exploring their relationships with human traits, such as cognition. Brain connectomes are usually represented as networks, with nodes corresponding to different regions of interest (ROIs...
Guardado en:
Autores principales: | Meimei Liu, Zhengwu Zhang, David B. Dunson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/64bfe1c9fbfd4bec91bbcc862e0d3f00 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Rate-Distortion Optimized Encoding for Deep Image Compression
por: Michael Schafer, et al.
Publicado: (2021) -
Photorealistic Reconstruction of Visual Texture From EEG Signals
por: Suguru Wakita, et al.
Publicado: (2021) -
Data-Driven Anomaly Detection in High-Voltage Transformer Bushings with LSTM Auto-Encoder
por: Imene Mitiche, et al.
Publicado: (2021) -
Rapid encoding of musical tones discovered in whole-brain connectivity
por: L. Bonetti, et al.
Publicado: (2021) -
A Dense Encoder–Decoder Network with Feedback Connections for Pan-Sharpening
por: Weisheng Li, et al.
Publicado: (2021)