Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis.

The rise of multi-drug resistant (MDR) and extensively drug resistant (XDR) tuberculosis around the world, including in industrialized nations, poses a great threat to human health and defines a need to develop new, effective and inexpensive anti-tubercular agents. Previously we developed a chemical...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sarah L Kinnings, Nina Liu, Nancy Buchmeier, Peter J Tonge, Lei Xie, Philip E Bourne
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2009
Materias:
Acceso en línea:https://doaj.org/article/64c00c83b6504f478fcb12e42c5a243c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:64c00c83b6504f478fcb12e42c5a243c
record_format dspace
spelling oai:doaj.org-article:64c00c83b6504f478fcb12e42c5a243c2021-11-25T05:42:19ZDrug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis.1553-734X1553-735810.1371/journal.pcbi.1000423https://doaj.org/article/64c00c83b6504f478fcb12e42c5a243c2009-07-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/19578428/pdf/?tool=EBIhttps://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358The rise of multi-drug resistant (MDR) and extensively drug resistant (XDR) tuberculosis around the world, including in industrialized nations, poses a great threat to human health and defines a need to develop new, effective and inexpensive anti-tubercular agents. Previously we developed a chemical systems biology approach to identify off-targets of major pharmaceuticals on a proteome-wide scale. In this paper we further demonstrate the value of this approach through the discovery that existing commercially available drugs, prescribed for the treatment of Parkinson's disease, have the potential to treat MDR and XDR tuberculosis. These drugs, entacapone and tolcapone, are predicted to bind to the enzyme InhA and directly inhibit substrate binding. The prediction is validated by in vitro and InhA kinetic assays using tablets of Comtan, whose active component is entacapone. The minimal inhibition concentration (MIC(99)) of entacapone for Mycobacterium tuberculosis (M.tuberculosis) is approximately 260.0 microM, well below the toxicity concentration determined by an in vitro cytotoxicity model using a human neuroblastoma cell line. Moreover, kinetic assays indicate that Comtan inhibits InhA activity by 47.0% at an entacapone concentration of approximately 80 microM. Thus the active component in Comtan represents a promising lead compound for developing a new class of anti-tubercular therapeutics with excellent safety profiles. More generally, the protocol described in this paper can be included in a drug discovery pipeline in an effort to discover novel drug leads with desired safety profiles, and therefore accelerate the development of new drugs.Sarah L KinningsNina LiuNancy BuchmeierPeter J TongeLei XiePhilip E BournePublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 5, Iss 7, p e1000423 (2009)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Sarah L Kinnings
Nina Liu
Nancy Buchmeier
Peter J Tonge
Lei Xie
Philip E Bourne
Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis.
description The rise of multi-drug resistant (MDR) and extensively drug resistant (XDR) tuberculosis around the world, including in industrialized nations, poses a great threat to human health and defines a need to develop new, effective and inexpensive anti-tubercular agents. Previously we developed a chemical systems biology approach to identify off-targets of major pharmaceuticals on a proteome-wide scale. In this paper we further demonstrate the value of this approach through the discovery that existing commercially available drugs, prescribed for the treatment of Parkinson's disease, have the potential to treat MDR and XDR tuberculosis. These drugs, entacapone and tolcapone, are predicted to bind to the enzyme InhA and directly inhibit substrate binding. The prediction is validated by in vitro and InhA kinetic assays using tablets of Comtan, whose active component is entacapone. The minimal inhibition concentration (MIC(99)) of entacapone for Mycobacterium tuberculosis (M.tuberculosis) is approximately 260.0 microM, well below the toxicity concentration determined by an in vitro cytotoxicity model using a human neuroblastoma cell line. Moreover, kinetic assays indicate that Comtan inhibits InhA activity by 47.0% at an entacapone concentration of approximately 80 microM. Thus the active component in Comtan represents a promising lead compound for developing a new class of anti-tubercular therapeutics with excellent safety profiles. More generally, the protocol described in this paper can be included in a drug discovery pipeline in an effort to discover novel drug leads with desired safety profiles, and therefore accelerate the development of new drugs.
format article
author Sarah L Kinnings
Nina Liu
Nancy Buchmeier
Peter J Tonge
Lei Xie
Philip E Bourne
author_facet Sarah L Kinnings
Nina Liu
Nancy Buchmeier
Peter J Tonge
Lei Xie
Philip E Bourne
author_sort Sarah L Kinnings
title Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis.
title_short Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis.
title_full Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis.
title_fullStr Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis.
title_full_unstemmed Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis.
title_sort drug discovery using chemical systems biology: repositioning the safe medicine comtan to treat multi-drug and extensively drug resistant tuberculosis.
publisher Public Library of Science (PLoS)
publishDate 2009
url https://doaj.org/article/64c00c83b6504f478fcb12e42c5a243c
work_keys_str_mv AT sarahlkinnings drugdiscoveryusingchemicalsystemsbiologyrepositioningthesafemedicinecomtantotreatmultidrugandextensivelydrugresistanttuberculosis
AT ninaliu drugdiscoveryusingchemicalsystemsbiologyrepositioningthesafemedicinecomtantotreatmultidrugandextensivelydrugresistanttuberculosis
AT nancybuchmeier drugdiscoveryusingchemicalsystemsbiologyrepositioningthesafemedicinecomtantotreatmultidrugandextensivelydrugresistanttuberculosis
AT peterjtonge drugdiscoveryusingchemicalsystemsbiologyrepositioningthesafemedicinecomtantotreatmultidrugandextensivelydrugresistanttuberculosis
AT leixie drugdiscoveryusingchemicalsystemsbiologyrepositioningthesafemedicinecomtantotreatmultidrugandextensivelydrugresistanttuberculosis
AT philipebourne drugdiscoveryusingchemicalsystemsbiologyrepositioningthesafemedicinecomtantotreatmultidrugandextensivelydrugresistanttuberculosis
_version_ 1718414520034000896