Advances in nanocarriers as drug delivery systems in Chagas disease
Christian Quijia Quezada,1,2 Clênia S Azevedo,1 Sébastien Charneau,3 Jaime M Santana,1 Marlus Chorilli,2 Marcella B Carneiro,4 Izabela Marques Dourado Bastos11Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Bras&i...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Dove Medical Press
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/64cbfb128db34ec180f3a074e35afcba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Christian Quijia Quezada,1,2 Clênia S Azevedo,1 Sébastien Charneau,3 Jaime M Santana,1 Marlus Chorilli,2 Marcella B Carneiro,4 Izabela Marques Dourado Bastos11Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil; 2Department of Drugs and Medicines, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil; 3Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, Brazil; 4Electron Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, BrazilAbstract: Chagas disease is one of the most important public health problems in Latin America due to its high mortality and morbidity levels. There is no effective treatment for this disease since drugs are usually toxic with low bioavailability. Serious efforts to achieve disease control and eventual eradication have been unsuccessful to date, emphasizing the need for rapid diagnosis, drug development, and a reliable vaccine. Novel systems for drug and vaccine administration based on nanocarriers represent a promising avenue for Chagas disease treatment. Nanoparticulate systems can reduce toxicity, and increase the efficacy and bioavailability of active compounds by prolonging release, and therefore improve the therapeutic index. Moreover, nanoparticles are able to interact with the host’s immune system, modulating the immune response to favour the elimination of pathogenic microorganisms. In addition, new advances in diagnostic assays, such as nanobiosensors, are beneficial in that they enable precise identification of the pathogen. In this review, we provide an overview of the strategies and nanocarrier-based delivery systems for antichagasic agents, such as liposomes, micelles, nanoemulsions, polymeric and non-polymeric nanoparticles. We address recent progress, with a particular focus on the advances of nanovaccines and nanodiagnostics, exploring new perspectives on Chagas disease treatment.Keywords: delivery systems, nanobiosensors, nanodiagnostics, nanoparticle systems, nanovaccine |
---|